Pattern Search Ranking and Selection Algorithms for Mixed-Variable Optimization of Stochastic Systems

Author:   Todd A Sriver
Publisher:   Hutson Street Press
ISBN:  

9781025088679


Pages:   252
Publication Date:   22 May 2025
Format:   Hardback
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $89.63 Quantity:  
Add to Cart

Share |

Pattern Search Ranking and Selection Algorithms for Mixed-Variable Optimization of Stochastic Systems


Overview

A new class of algorithms is introduced and analyzed for bound and linearly constrained optimization problems with stochastic objective functions and a mixture of design variable types. The generalized pattern search (GPS) class of algorithms is extended to a new problem setting in which objective function evaluations require sampling from a model of a stochastic system. The approach combines GPS with ranking and selection (RS) statistical procedures to select new iterates. The derivative-free algorithms require only black-box simulation responses andare applicable over domains withmixedvariables (continuous, discrete numeric, and discrete categorical)to include bound and linear constraints on the continuous variables. A convergence analysis for the general class of algorithms establishes almost sure convergence of an iteration subsequence to stationary points appropriately defined in the mixed-variable domain. Additionally, specific algorithm instances are implemented that provide computational enhancements to the basic algorithm. Implementation alternatives include the use of modern RS procedures designed to provide efficientsamplingstrategies andthe use of surrogate functions that augment the search by approximating the unknown objective function with nonparametric response surfaces. In a computational evaluation, six variants of the algorithm are tested along with four competing methods on 26 standardized test problems. The numerical results validate the use of advanced implementations as a means to improve algorithm performance. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Full Product Details

Author:   Todd A Sriver
Publisher:   Hutson Street Press
Imprint:   Hutson Street Press
Dimensions:   Width: 15.60cm , Height: 1.60cm , Length: 23.40cm
Weight:   0.531kg
ISBN:  

9781025088679


ISBN 10:   1025088670
Pages:   252
Publication Date:   22 May 2025
Audience:   General/trade ,  General
Format:   Hardback
Publisher's Status:   Active
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

Reviews

Author Information

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List