|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Josselin Garnier (Université de Paris VII (Denis Diderot)) , George Papanicolaou (Stanford University, California)Publisher: Cambridge University Press Imprint: Cambridge University Press Dimensions: Width: 17.90cm , Height: 1.70cm , Length: 25.20cm Weight: 0.760kg ISBN: 9781107135635ISBN 10: 110713563 Pages: 306 Publication Date: 21 April 2016 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsPreface; 1. Introduction and overview of the book; 2. Green's function estimation from noise cross correlations; 3. Travel time estimation from noise cross correlations using stationary phase; 4. Overview of conventional sensor array imaging; 5. Passive array imaging of reflectors using ambient noise illumination; 6. Resolution analysis for passive array imaging using ambient noise illumination; 7. Travel time estimation using ambient noise in weakly scattering media; 8. Correlation-based reflector imaging using ambient noise in weakly scattering media; 9. Virtual source imaging in homogeneous media; 10. Virtual source imaging in scattering media; 11. Imaging with intensity cross correlations; 12. A review of wave propagation in random media; Appendix. Basic facts from analysis and probability; References; Index.ReviewsAuthor InformationJosselin Garnier is a professor in the Mathematics Department at the Université Paris Diderot, France. His background is in applied probability and he has many years of research experience in the field of wave propagation and imaging in random media. He received the Blaise Pascal Prize from the French Academy of Sciences in 2007 and the Felix Klein Prize from the European Mathematical Society in 2008. George Papanicolaou is the Robert Grimmett Professor in Mathematics at Stanford University, California. He specializes in applied and computational mathematics, partial differential equations, and stochastic processes. He received the John von Neumann Prize from the Society for Industrial and Applied Mathematics in 2006 and the William Benter Prize in Applied Mathematics in 2010. He was elected to the National Academy of Sciences in 2000 and he became a fellow of the American Mathematical Society in 2012. Tab Content 6Author Website:Countries AvailableAll regions |