Parallel Processing and Parallel Algorithms: Theory and Computation

Author:   Seyed H. Roosta
Publisher:   Springer-Verlag New York Inc.
Edition:   2000 ed.
ISBN:  

9780387987163


Pages:   566
Publication Date:   10 December 1999
Format:   Hardback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $419.76 Quantity:  
Add to Cart

Share |

Parallel Processing and Parallel Algorithms: Theory and Computation


Add your own review!

Overview

This book covers the essential elements of parallel processing and parallel algorithms. It is unique in that it is a self-contained book covering everything fundamental of parallel processing from computer architecture to parallel programming and parallel algorithms. It is designed to function as a text for an undergraduate course in parallel processing, but also works well as a comprehensive reference for professionals interested in all phases of parallel processing and parallel programming.

Full Product Details

Author:   Seyed H. Roosta
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   2000 ed.
Dimensions:   Width: 17.80cm , Height: 3.20cm , Length: 25.40cm
Weight:   1.239kg
ISBN:  

9780387987163


ISBN 10:   0387987169
Pages:   566
Publication Date:   10 December 1999
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

1 Computer Architecture.- 1.1 Classification of Computer Architectures.- 1.2 Parallel Architectures.- 1.3 Data Flow Architectures.- Summary.- Exercises.- 2 Components of Parallel Computers.- 2.1 Memory.- 2.2 Interconnection Networks.- 2.3 Goodness Measures for Interconnection Networks.- 2.4 Compilers.- 2.5 Operating Systems.- 2.6 Input and Output Constraints.- Summary.- Exercises.- 3 Principles of Parallel Programming.- 3.1 Programming Languages for Parallel Processing.- 3.2 Precedence Graph of a Process.- 3.3 Data Parallelism Versus Control Parallelism.- 3.4 Message Passing Versus Shared Address Space.- 3.5 Mapping.- 3.6 Granularity.- Summary.- Exercises.- 4 Parallel Programming Approaches.- 4.1 Parallel Programming with UNIX.- 4.2 Parallel Programming with PCN.- 4.3 Parallel Programming with PVM.- 4.4 Parallel Programming with C-Linda.- 4.5 Parallel Programming with EPT.- 4.6 Parallel Programming with CHARM.- Summary.- 5 Principles of Parallel Algorithm Design.- 5.1 Design Approaches.- 5.2 Design Issues.- 5.3 Performance Measures and Analysis.- 5.4 Complexities.- 5.5 Anomalies in Parallel Algorithms.- 5.6 Pseudocode Conventions for Parallel Algorithms.- 5.7 Comparison of SIMD and MIMD Algorithms.- Summary.- Exercises.- 6 Parallel Graph Algorithms.- 6.1 Connected Components.- 6.2 Paths and All-Pairs Shortest Paths.- 6.3 Minimum Spanning Trees and Forests.- 6.4 Traveling Salesman Problem.- 6.5 Cycles in a Graph.- 6.6 Coloring of Graphs.- Summary.- Exercises.- 7 Parallel Search Algorithms.- 7.1 Divide and Conquer.- 7.2 Depth-First Search.- 7.3 Breadth-First Search.- 7.4 Best-First Search.- 7.5 Branch-and-Bound Search.- 7.6 Alpha-Beta Minimax Search.- Summary.- Exercises.- 8 Parallel Computational Algorithms.- 8.1 Prefix Computation.- 8.2 Transitive Closure.- 8.3 Matrix Computation.- 8.3.1 Matrix-Vector Multiplication.- 8.3.2 Matrix-Matrix Multiplication.- 8.4 System of Linear Equations.- 8.5 Computing Determinants.- 8.6 Expression Evaluation.- 8.7 Sorting.- Summary.- Exercises.- 9 Data Flow and Functional Programming.- 9.1 Data Flow Programming.- 9.2 Functional Programming.- Summary.- 10 Asynchronous Parallel Programming.- 10.1 Parallel Programming with Ada.- 10.2 Parallel Programming with Occam.- 10.3 Parallel Programming with Modula-2.- Summary.- 11 Data Parallel Programming.- 11.1 Data Parallel Programming with C*.- 11.2 Data Parallel Programming with Fortran 90.- Summary.- Exercises.- 12 Artificial Intelligence and Parallel Processing.- 12.1 Production Systems.- 12.2 Reasoning Systems.- 12.3 Parallelism Analysis.- 12.4 Parallelizing AI Algorithms.- 12.5 Parallelizing AI Architectures.- 12.6 Parallelizing AI Programming Languages.- 12.7 Neural Networks or Parallel Distributed Processing.- Summary.- Exercises.- Author Index.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List