|
![]() |
|||
|
||||
OverviewThis book is focused on pancyclic and bipancyclic graphs and is geared toward researchers and graduate students in graph theory. Readers should be familiar with the basic concepts of graph theory, the definitions of a graph and of a cycle. Pancyclic graphs contain cycles of all possible lengths from three up to the number of vertices in the graph. Bipartite graphs contain only cycles of even lengths, a bipancyclic graph is defined to be a bipartite graph with cycles of every even size from 4 vertices up to the number of vertices in the graph. Cutting edge research and fundamental results on pancyclic and bipartite graphs from a wide range of journal articles and conference proceedings are composed in this book to create a standalone presentation. The following questions are highlighted through the book: - What is the smallest possible number of edges in a pancyclic graph with v vertices? - When do pancyclic graphs exist with exactly one cycle of every possible length? - What is the smallest possible number of edges in a bipartite graph with v vertices? - When do bipartite graphs exist with exactly one cycle of every possible length? Full Product DetailsAuthor: John C. George , Abdollah Khodkar , W.D. WallisPublisher: Springer International Publishing AG Imprint: Springer International Publishing AG Edition: 1st ed. 2016 Dimensions: Width: 15.50cm , Height: 0.70cm , Length: 23.50cm Weight: 1.942kg ISBN: 9783319319506ISBN 10: 3319319507 Pages: 108 Publication Date: 27 May 2016 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of Contents1.Graphs.- 2. Degrees and Hamiltoneity.- 3. Pancyclicity.- 4. Minimal Pancyclicity.- 5. Uniquely Pancyclic Graphs.- 6. Bipancyclic Graphs.- 7. Uniquely Bipancyclic Graphs.- 8. Minimal Bipancyclicity.- References.ReviewsIn this book, the authors give a simple survey about the sufficient conditions for a graph to be pancyclic (uniquely bipancyclic). Moreover, the authors give the proofs of some classic results which are useful tools to study and generalize cycle problems. Therefore, this book can help students and researchers alike to find inspiration and ideas on pancyclic and bipancyclic problems. (Junqing Cai, Mathematical Reviews, February, 2017) Author InformationTab Content 6Author Website:Countries AvailableAll regions |