|
![]() |
|||
|
||||
OverviewIn this paper we develop a new approach for studying overlapping iterated function systems. This approach is inspired by a famous result due to Khintchine from Diophantine approximation which shows that for a family of limsup sets, their Lebesgue measure is determined by the convergence or divergence of naturally occurring volume sums. For many parameterised families of overlapping iterated function systems, we prove that a typical member will exhibit similar Khintchine like behaviour. Families of iterated function systems that our results apply to include those arising from Bernoulli convolutions, the {0, 1, 3} problem, and affine contractions with varying translation parameter. As a by-product of our analysis we obtain new proofs of some well known results due to Solomyak on the absolute continuity of Bernoulli convolutions, and when the attractor in the {0, 1, 3} problem has positive Lebesgue measure. For each t ? [0, 1] we let ?t be the iterated function system given by ?t := ?1(x) = x 2 , ?2(x) = x + 1 2 , ?3(x) = x + t 2 , ?4(x) = x +1+ t 2 . We prove that either ?t contains an exact overlap, or we observe Khintchine like behaviour. Our analysis shows that by studying the metric properties of limsup sets, we can distinguish between the overlapping behaviour of iterated function systems in a way that is not available to us by simply studying properties of self-similar measures. Last of all, we introduce a property of an iterated function system that we call being consistently separated with respect to a measure. We prove that this property implies that the pushforward of the measure is absolutely continuous. We include several explicit examples of consistently separated iterated function systems. Full Product DetailsAuthor: Simon BakerPublisher: American Mathematical Society Imprint: American Mathematical Society Volume: Volume: 287 Number: 1428 ISBN: 9781470464400ISBN 10: 1470464403 Pages: 95 Publication Date: 31 July 2023 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Temporarily unavailable ![]() The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you. Table of ContentsReviewsAuthor InformationSimon Baker, University of Birmingham, United Kingdom. Tab Content 6Author Website:Countries AvailableAll regions |