|
![]() |
|||
|
||||
OverviewThis is the first book on the subject since its introduction more than fifty years ago, and it can be used as a graduate text or as a reference work. It features all of the key results, many very useful tables, and a large number of research problems. The book will be of interest to those interested in one of the most fascinating areas of discrete mathematics, connected to statistics and coding theory, with applications to computer science and cryptography. It will be useful for anyone who is running experiments, whether in a chemistry lab or a manufacturing plant (trying to make those alloys stronger), or in agricultural or medical research. Sam Hedayat is Professor of Statistics and Senior Scholar in the Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago. Neil J. A. Sloane is with AT&T Bell Labs (now AT&T Labs). John Stufken is Professor Statistics at Iowa State University. Full Product DetailsAuthor: A.S. Hedayat , N.J.A. Sloane , John StufkenPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: 1999 ed. Dimensions: Width: 15.50cm , Height: 2.50cm , Length: 23.50cm Weight: 1.760kg ISBN: 9780387987668ISBN 10: 0387987665 Pages: 417 Publication Date: 22 June 1999 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Out of print, replaced by POD ![]() We will order this item for you from a manufatured on demand supplier. Table of Contents1 Introduction.- 1.1 Problems.- 2 Rao’s Inequalities and Improvements.- 2.1 Introduction.- 2.2 Rao’s Inequalities.- 2.3 Improvements on Rao’s Bounds for Strength 2 and 3.- 2.4 Improvements on Rao’s Bounds for Arrays of Index Unity.- 2.5 Orthogonal Arrays with Two Levels.- 2.6 Concluding Remarks.- 2.7 Notes on Chapter 2.- 2.8 Problems.- 3 Orthogonal Arrays and Galois Fields.- 3.1 Introduction.- 3.2 Bush’s Construction.- 3.3 Addelman and Kempthorne’s Construction.- 3.4 The Rao-Hamming Construction.- 3.5 Conditions for a Matrix.- 3.6 Concluding Remarks.- 3.7 Problems.- 4 Orthogonal Arrays and Error-Correcting Codes.- 4.1 An Introduction to Error-Correcting Codes.- 4.2 Linear Codes.- 4.3 Linear Codes and Linear Orthogonal Arrays.- 4.4 Weight Enumerators and Delsarte’s Theorem.- 4.5 The Linear Programming Bound.- 4.6 Concluding Remarks.- 4.7 Notes on Chapter 4.- 4.8 Problems.- 5 Construction of Orthogonal Arrays from Codes.- 5.1 Extending a Code by Adding More Coordinates.- 5.2 Cyclic Codes.- 5.3 The Rao-Hamming Construction Revisited.- 5.4 BCH Codes.- 5.5 Reed-Solomon Codes.- 5.6 MDS Codes and Orthogonal Arrays of Index Unity.- 5.7 Quadratic Residue and Golay Codes.- 5.8 Reed-Muller Codes.- 5.9 Codes from Finite Geometries.- 5.10 Nordstrom-Robinson and Related Codes.- 5.11 Examples of Binary Codes and Orthogonal Arrays.- 5.12 Examples of Ternary Codes and Orthogonal Arrays.- 5.13 Examples of Quaternary Codes and Orthogonal Arrays.- 5.14 Notes on Chapter 5.- 5.15 Problems.- 6 Orthogonal Arrays and Difference Schemes.- 6.1 Difference Schemes.- 6.2 Orthogonal Arrays Via Difference Schemes.- 6.3 Bose and Bush’s Recursive Construction.- 6.4 Difference Schemes of Index 2.- 6.5 Generalizations and Variations.- 6.6 Concluding Remarks.- 6.7 Notes on Chapter 6.- 6.8Problems.- 7 Orthogonal Arrays and Hadamard Matrices.- 7.1 Introduction.- 7.2 Basic Properties of Hadamard Matrices.- 7.3 The Connection Between Hadamard Matrices and Orthogonal Arrays.- 7.4 Constructions for Hadamard Matrices.- 7.5 Hadamard Matrices of Orders up to 200.- 7.6 Notes on Chapter 7.- 7.7 Problems.- 8 Orthogonal Arrays and Latin Squares.- 8.1 Latin Squares and Orthogonal Latin Squares.- 8.2 Frequency Squares and Orthogonal Frequency Squares.- 8.3 Orthogonal Arrays from Pairwise Orthogonal Latin Squares.- 8.4 Concluding Remarks.- 8.5 Problems.- 9 Mixed Orthogonal Arrays.- 9.1 Introduction.- 9.2 The Rao Inequalities for Mixed Orthogonal Arrays.- 9.3 Constructing Mixed Orthogonal Arrays.- 9.4 Further Constructions.- 9.5 Notes on Chapter 9.- 9.6 Problems.- 10 Further Constructions and Related Structures.- 10.1 Constructions Inspired by Coding Theory.- 10.2 The Juxtaposition Construction.- 10.3 The (u, u + ?) Construction.- 10.4 Construction X4.- 10.5 Orthogonal Arrays from Union of Translates of a Linear Code.- 10.6 Bounds on Large Orthogonal Arrays.- 10.7 Compound Orthogonal Arrays.- 10.8 Orthogonal Multi-Arrays.- 10.9 Transversal Designs, Resilient Functions and Nets.- 10.10 Schematic Orthogonal Arrays.- 10.11 Problems.- 11 Statistical Application of Orthogonal Arrays.- 11.1 Factorial Experiments.- 11.2 Notation and Terminology.- 11.3 Factorial Effects.- 11.4 Analysis of Experiments Based on Orthogonal Arrays.- 11.5 Two-Level Fractional Factorials with a Defining Relation.- 11.6 Blocking for a 2k-n Fractional Factorial.- 11.7 Orthogonal Main-Effects Plans and Orthogonal Arrays.- 11.8 Robust Design.- 11.9 Other Types of Designs.- 11.10 Notes on Chapter 11.- 11.11 Problems.- 12 Tables of Orthogonal Arrays.- 12.1 Tables of Orthogonal Arrays of Minimal Index.-12.2 Description of Tables 12.1?12.3.- 12.3 Index Tables.- 12.4 If No Suitable Orthogonal Array Is Available.- 12.5 Connections with Other Structures.- 12.6 Other Tables.- Appendix A: Galois Fields.- A.1 Definition of a Field.- A.2 The Construction of Galois Fields.- A.3 The Existence of Galois Fields.- A.4 Quadratic Residues in Galois Fields.- A.5 Problems.- Author Index.ReviewsFrom a review: <p>MATHEMATICAL REVIEWS <p> The book is well written and nice to read. It contains a wealth of concrete examples, many exercises, some research problems and a generally quite thorough discussion of the available literature. I can recommend it to anybody interested in discrete mathematics, in particular designs and codes, or in design of experiements. <p> From a review: MATHEMATICAL REVIEWS The book is well written and nice to read. It contains a wealth of concrete examples, many exercises, some research problems and a generally quite thorough discussion of the available literature. I can recommend it to anybody interested in discrete mathematics, in particular designs and codes, or in design of experiements. Author InformationTab Content 6Author Website:Countries AvailableAll regions |