|
![]() |
|||
|
||||
OverviewChapter 1 Introduction 1-1 The Spectroscopic Approach to Structure Determination 1-2 Contributions of Different Forms of Spectroscopy 1-3 The Electromagnetic Spectrum 1-4 Molecular Weight and Molecular Formula 1-5 Structural Isomers and Stereoisomers Problems Part I NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Chapter 2 Introduction 2-1 Magnetic Properties of Nuclei 2-2 The Chemical Shift 2-3 Excitation and Relaxation 2-4 Pulsed Experiments 2-5 The Coupling Constant 2-6 Quantification and Complex Splitting 2-7 Commonly Studied Nuclides 2-8 Dynamic Effects 2-9 Spectra of Solids 2-10 Experimental Methods Problems Tips on Solving NMR Problems Bibliography Chapter 3 The Chemical Shift 3-1 Factors That Influence Proton Shifts 3-2 Proton Chemical Shifts and Structure 3-3 Medium and Isotope Effects 3-4 Factors That Influence Carbon Shirts 3-5 Carbon Chemical Shifts and Structure 3-6 Tables of Chemical Shifts Problems Further Tips on Solving NMR Problems Bibliography Chapter 4 The Coupling Constant 4-1 First-Order Spectra 4-2 Chemical and Magnetic Equivalence 4-3 Signs and Mechanisms 4-4 Couplings over One Bond 4-5 Geminal Couplings 4-6 Vicinal Couplings 4-7 Long-Range Couplings 4-8 Spectral Analysis 4-9 Second-Order Spectra 4-10 Tables of Coupling Constants Problems Bibliography Chapter 5 Further Topics in One-Dimensional NMR 5-1 Spin-Lattice and Spin-Spin Relaxation 5-2 Reactions on the NMR Time Scale 5-3 Multiple Resonance 5-4 The Nuclear Overhauser Effect 5-5 Spectral Editing 5-6 Sensitivity Enhancement 5-7 Carbon Connectivity 5-8 Phase Cycling, Composite Pulses, and Shaped Pulses Problems Bibliography Chapter 6 Two-Dimensional NMR 6-1 Proton-Proton Correlation Through Coupling 6-2 Proton-Heteronucleus Correlation 6-3 Proton-Proton Correlation Through Space or Chemical Exchange 6-4 Carbon-Carbon Correlation 6-5 Higher Dimensions 6-6 Pulsed Field Gradients 6-7 Summary of Two-Dimensional Methods Problems Bibliography Part II MASS SPECTROMETRY Chapter 7 Instrumentation and Theory 7-1 Introduction 7-2 Ionization Methods 7-3 Mass Analysis 7-4 Sample Preparation Chapter 8 Ion Activation and Fragmentation 8-1 Basic Principles 8-2 Methods and Energetics 8-3 Functional Groups Chapter 9 Structural Analysis 9-1 Molecular Weights 9-2 Molecular Formula 9-3 Structures from Fragmentation Patterns 9-4 Polymers Chapter 10 Quantitative Applications 10-1 Quantification of Analytes 10-2 Thermochemistry Part III VIBRATIONAL SPECTROSCOPY Chapter 11 Introduction 11-1 Introd Full Product DetailsAuthor: Joseph Lambert , Scott Gronert , Herbert F. Shurvell , David A. LightnerPublisher: Pearson Education Limited Imprint: Pearson Education Limited Edition: 2nd edition Dimensions: Width: 21.60cm , Height: 1.70cm , Length: 27.50cm Weight: 0.974kg ISBN: 9781292039565ISBN 10: 1292039566 Pages: 464 Publication Date: 01 November 2013 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsChapter 1 Introduction 1-1 The Spectroscopic Approach to Structure Determination 1-2 Contributions of Different Forms of Spectroscopy 1-3 The Electromagnetic Spectrum 1-4 Molecular Weight and Molecular Formula 1-5 Structural Isomers and Stereoisomers Problems Part I NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Chapter 2 Introduction 2-1 Magnetic Properties of Nuclei 2-2 The Chemical Shift 2-3 Excitation and Relaxation 2-4 Pulsed Experiments 2-5 The Coupling Constant 2-6 Quantification and Complex Splitting 2-7 Commonly Studied Nuclides 2-8 Dynamic Effects 2-9 Spectra of Solids 2-10 Experimental Methods Problems Tips on Solving NMR Problems Bibliography Chapter 3 The Chemical Shift 3-1 Factors That Influence Proton Shifts 3-2 Proton Chemical Shifts and Structure 3-3 Medium and Isotope Effects 3-4 Factors That Influence Carbon Shirts 3-5 Carbon Chemical Shifts and Structure 3-6 Tables of Chemical Shifts Problems Further Tips on Solving NMR Problems Bibliography Chapter 4 The Coupling Constant 4-1 First-Order Spectra 4-2 Chemical and Magnetic Equivalence 4-3 Signs and Mechanisms 4-4 Couplings over One Bond 4-5 Geminal Couplings 4-6 Vicinal Couplings 4-7 Long-Range Couplings 4-8 Spectral Analysis 4-9 Second-Order Spectra 4-10 Tables of Coupling Constants Problems Bibliography Chapter 5 Further Topics in One-Dimensional NMR 5-1 Spin-Lattice and Spin-Spin Relaxation 5-2 Reactions on the NMR Time Scale 5-3 Multiple Resonance 5-4 The Nuclear Overhauser Effect 5-5 Spectral Editing 5-6 Sensitivity Enhancement 5-7 Carbon Connectivity 5-8 Phase Cycling, Composite Pulses, and Shaped Pulses Problems Bibliography Chapter 6 Two-Dimensional NMR 6-1 Proton-Proton Correlation Through Coupling 6-2 Proton-Heteronucleus Correlation 6-3 Proton-Proton Correlation Through Space or Chemical Exchange 6-4 Carbon-Carbon Correlation 6-5 Higher Dimensions 6-6 Pulsed Field Gradients 6-7 Summary of Two-Dimensional Methods Problems Bibliography Part II MASS SPECTROMETRY Chapter 7 Instrumentation and Theory 7-1 Introduction 7-2 Ionization Methods 7-3 Mass Analysis 7-4 Sample Preparation Chapter 8 Ion Activation and Fragmentation 8-1 Basic Principles 8-2 Methods and Energetics 8-3 Functional Groups Chapter 9 Structural Analysis 9-1 Molecular Weights 9-2 Molecular Formula 9-3 Structures from Fragmentation Patterns 9-4 Polymers Chapter 10 Quantitative Applications 10-1 Quantification of Analytes 10-2 Thermochemistry Part III VIBRATIONAL SPECTROSCOPY Chapter 11 Introduction 11-1 IntrodReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |