|
|
|||
|
||||
OverviewAlthough it has long been possible to make organic materials emit light, it has only recently become possible to do so at the level and with the efficiency and control necessary to make the materials a useful basis for illumination or displays. The early electroluminescent devices provided reasonably bright light, but required high operating voltages, produced only a narrow range of colors, and had severely limited lifetimes. Recent developments, however, make it possible to manufacture organic light-emitting devices that are thin, bright, efficient, and stable and that produce a broad range of colors. Full Product DetailsAuthor: Joseph ShinarPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: 2004 ed. Dimensions: Width: 15.50cm , Height: 1.90cm , Length: 23.50cm Weight: 0.677kg ISBN: 9780387953434ISBN 10: 0387953434 Pages: 309 Publication Date: 31 October 2003 Audience: Professional and scholarly , College/higher education , Professional & Vocational , Postgraduate, Research & Scholarly Format: Hardback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents1 Introduction to Organic Light-Emitting Devices.- 1.1 Introduction.- 1.2 Basic Electronic Structure and Dynamics of ?-Conjugated Materials.- 1.3 Basic Structure of OLEDs.- 1.4 OLED Fabrication Procedures.- 1.5 Materials for OLEDs & PLEDs.- 1.6 Basic Operation of OLEDs.- 1.7 Carrier Transport in OLEDs.- 1.8 The Efficiency of OLEDs.- 1.9 Degradation Mechanisms.- 1.10 Outlook for OLEDs.- References.- 2 Molecular LED: Design Concept of Molecular Materials for High-Performance OLED.- 2.1 Introduction.- 2.2 OLED Development from the 1960s to the 1980s.- 2.3 Working Mechanisms of OLED.- 2.4 Design of Multilayer Structures.- 2.5 Molecular Materials for OLED.- 2.6 Future Possibilities of OLED.- 2.7 Conclusion.- References.- 3 Chemical Degradation and Physical Aging of Aluminum(III) 8-Hydroxyquinoline: Implications for Organic Light-Emitting Diodes and Materials Design.- 3.1 Introduction.- 3.2 Chemical Stability of OLED Materials.- 3.3 Morphological Stability of Organic Glasses in LEDs.- 3.4 The Effect of Aging Processes on OLED Performance.- References.- 4 Organic Microcavity Light-Emitting Diodes.- 4.1 Introduction.- 4.2 Types of Microcavities.- 4.3 Planar Microcavity LEDs.- 4.4 Single Mode and Multimode Planar Microcavity LEDs.- 4.5 Intensity and Angular Dependence in Planar Microcavities.- 4.6 Materials for Organic Microcavity LED Displays.- 4.7 Summary.- References.- 5 Light-Emitting Diodes Based on Poly(p-phenylenevinylene) and Its Derivatives.- 5.1 Introduction.- 5.2 The Electronic Structure of PPV.- 5.3 Synthesis of PPV and Derivatives.- 5.4 Single-Layer LEDs.- 5.5 Multiple-Layer Polymer LEDs.- 5.6 Transport and Recombination in Polymer LEDs.- 5.7 Optical Properties of Polymer LEDs.- 5.8 Novel LED Structures.- 5.9 Prospects for Applications of PPV-Based LEDs.- 5.10Conclusions.- References.- 6 Polymer Morphology and Device Performance in Polymer Electronics.- 6.1 Introduction.- 6.2 The Control of Polymer Morphology.- 6.3 The Control of Device Performance via Morphology Control..- 6.4 Conclusions.- References.- 7 On the Origin of Double Light Spikes from Polymer Light-Emitting Devices.- 7.1 Introduction.- 7.2 Experimental.- 7.3 Results and Analysis.- 7.4 Discussion.- 7.5 Conclusions.- References.- 8 Electroluminescence with Poly(para-phenylenes).- 8.1 Introduction.- 8.2 Physical Properties of Oligophenyls and Polyphenyls.- 8.3 Electroluminescence.- 8.4 Conclusions.- References.- 9 Direct and Alternating Current Light-Emitting Devices Based on Pyridine-Containing Conjugated Polymers.- 9.1 Introduction.- 9.2 Experiments.- 9.3 Results and Discussion.- 9.4 Summary and Conclusion.- References.- 10 Polyfluorene Electroluminescence.- 10.1 Introduction.- 10.2 Synthesis and Characterization of Polyfluorene.- 10.3 Electroluminescence.- 10.4 Concluding Remarks.- References.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |
||||