Ordinary Differential Equations

Author:   Wolfgang Walter ,  R. Thompson
Publisher:   Springer-Verlag New York Inc.
Edition:   1998 ed.
Volume:   182
ISBN:  

9780387984599


Pages:   384
Publication Date:   01 July 1998
Format:   Hardback
Availability:   Out of print, replaced by POD   Availability explained
We will order this item for you from a manufatured on demand supplier.

Our Price $237.47 Quantity:  
Add to Cart

Share |

Ordinary Differential Equations


Add your own review!

Overview

Full Product Details

Author:   Wolfgang Walter ,  R. Thompson
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   1998 ed.
Volume:   182
Dimensions:   Width: 15.50cm , Height: 2.20cm , Length: 23.50cm
Weight:   1.620kg
ISBN:  

9780387984599


ISBN 10:   0387984593
Pages:   384
Publication Date:   01 July 1998
Audience:   College/higher education ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Active
Availability:   Out of print, replaced by POD   Availability explained
We will order this item for you from a manufatured on demand supplier.

Table of Contents

I. First Order Equations: Some Integrable Cases.- § 1. Explicit First Order Equations.- § 2. The Linear Differential Equation. Related Equations.- § 3. Differential Equations for Families of Curves. Exact Equations.- § 4. Implicit First Order Differential Equations.- II: Theory of First Order Differential Equations.- § 5. Tools from Functional Analysis.- § 6. An Existence and Uniqueness Theorem.- § 7. The Peano Existence Theorem.- § 8. Complex Differential Equations. Power Series Expansions.- § 9. Upper and Lower Solutions. Maximal and Minimal Integrals.- III: First Order Systems. Equations of Higher Order.- § 10. The Initial Value Problem for a System of First Order.- § 11. Initial Value Problems for Equations of Higher Order.- § 12. Continuous Dependence of Solutions.- § 13. Dependence of Solutions on Initial Values and Parameters.- IV: Linear Differential Equations.- § 14. Linear Systems.- § 15. Homogeneous Linear Systems.- § 16. Inhomogeneous Systems.- § 17. Systems with Constant Coefficients.- § 18. Matrix Functions. Inhomogeneous Systems.- § 19. Linear Differential Equations of Order n.- § 20. Linear Equations of Order nwith Constant Coefficients.- V: Complex Linear Systems.- § 21. Homogeneous Linear Systems in the Regular Case.- § 22. Isolated Singularities.- § 23. Weakly Singular Points. Equations of Fuchsian Type.- § 24. Series Expansion of Solutions.- § 25. Second Order Linear Equations.- VI: Boundary Value and Eigenvalue Problems.- § 26. Boundary Value Problems.- § 27. The Sturm—Liouville Eigenvalue Problem.- § 28. Compact Self-Adjoint Operators in Hilbert Space.- VII: Stability and Asymptotic Behavior.- § 29. Stability.- § 30. The Method of Lyapunov.- A. Topology.- B. Real Analysis.- C. C0111plex Analysis.- D. FunctionalAnalysis.- Solutions and Hints for Selected Exercises.- Literature.- Notation.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List