Ordinary and Delay Differential Equations

Author:   R. D. Driver
Publisher:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of the original 1st ed. 1977
Volume:   20
ISBN:  

9780387902319


Pages:   505
Publication Date:   17 February 1977
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $92.27 Quantity:  
Add to Cart

Share |

Ordinary and Delay Differential Equations


Overview

This textbook is designed for the intermediate-level course on ordinary differential equations offered at many universities and colleges. It treats, as standard topics of such a course: existence and uniqueness theory, linear s- terns, stability theory, and introductory phase-plane analysis of autonomous second order systems. The unique feature of the book is its further inc- sion of a substantial introduction to delay differential eq- tions. Such equations are motivated by problems in control theory, physics, biology, ecology, economics, inventory c- trol, and the theory of nuclear reactors. The surge of interest in delay differential equations during the past two or three decades is evidenced by th- sands of research papers on the subject and about 20 published books devoted in whole or in part to these equations. The v * ...books include those of Myskis [1951] , El' sgol' c [1955] and [1964], Pinney [1958], Krasovskil [1959], Bellman and Cooke [1963], Norkin [1965], Halanay [1966], Oguztoreli [1966], Lakshmikantham and Leela [1969], Mitropol'skir and Martynjuk [1969], Martynjuk [1971], and Hale [1971], plus a number of symposium and seminar proceedings published in the U.S. and the U. S.S.R. These books have influenced the present textbook.

Full Product Details

Author:   R. D. Driver
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of the original 1st ed. 1977
Volume:   20
Dimensions:   Width: 15.50cm , Height: 2.60cm , Length: 23.50cm
Weight:   1.580kg
ISBN:  

9780387902319


ISBN 10:   0387902317
Pages:   505
Publication Date:   17 February 1977
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

I Elementary Methods for Ordinary Differential Equations of First Order.- 1. Examples and classification.- 2. Linear equations.- 3. Separable equations.- II Uniqueness and Lipschitz Conditions for Ordinary Differential Equations.- 4. First order scalar equations.- 5. Systems of equations.- 6. Higher order equations.- 7. Complex solutions.- 8. A valuable lemma.- 9. A boundary value problem.- III The Linear Equation of Order n.- 10. Constant coefficients (the homogeneous case).- 11. Linear independence and Wronskians.- 12. Constant coefficients (general solution for simple h).- 13. Variation of parameters.- IV Linear Ordinary Differential Systems.- 14. Some general properties.- 15. Constant coefficients.- 16. Oscillations and damping in applications.- 17. Variation of parameters.- 18. Matrix norm.- 19. Matrix exponential.- 20. Existence of solutions (successive approximations).- V Introduction to Delay Differential Equations.- 21. Examples and the method of steps.- 22. Some distinguishing features and some “wrong” questions.- 23. Lipschitz condition and uniqueness.- VI Existence Theory.- 24. Ordinary differential systems.- 25. Systems with bounded delays: notation and uniqueness.- 26. Systems with bounded delays: existence.- VII Linear Delay Differential Systems.- 27. Superposition.- 28. Constant coefficients.- 29. Variation of parameters.- VIII Stability.- 30. Definitions and examples.- 31. Lyapunov method for uniform stability.- 32. Asymptotic stability.- 33. Linear and quasi-linear ordinary differential systems.- 34. Linear and quasi-linear delay differential systems.- IX Autonomous Ordinary Differential Systems.- 35. Trajectories and critical points.- 36. Linear systems of second order.- 37. Critical points of quasi-linear systems of second order.- 38. Globalbehavior for some nonlinear examples.- Appendices.- 1. Notation for sets, functions and derivatives.- Appendices.- 2. Some theorems from calculus.- References.- Answers and Hints.

Reviews

Author Information

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List