Optimal Mass Transport on Euclidean Spaces

Author:   Francesco Maggi (University of Texas, Austin)
Publisher:   Cambridge University Press
ISBN:  

9781009179706


Pages:   345
Publication Date:   16 November 2023
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $129.35 Quantity:  
Add to Cart

Share |

Optimal Mass Transport on Euclidean Spaces


Add your own review!

Overview

Optimal mass transport has emerged in the past three decades as an active field with wide-ranging connections to the calculus of variations, PDEs, and geometric analysis. This graduate-level introduction covers the field's theoretical foundation and key ideas in applications. By focusing on optimal mass transport problems in a Euclidean setting, the book is able to introduce concepts in a gradual, accessible way with minimal prerequisites, while remaining technically and conceptually complete. Working in a familiar context will help readers build geometric intuition quickly and give them a strong foundation in the subject. This book explores the relation between the Monge and Kantorovich transport problems, solving the former for both the linear transport cost (which is important in geometric applications) and for the quadratic transport cost (which is central in PDE applications), starting from the solution of the latter for arbitrary transport costs.

Full Product Details

Author:   Francesco Maggi (University of Texas, Austin)
Publisher:   Cambridge University Press
Imprint:   Cambridge University Press
ISBN:  

9781009179706


ISBN 10:   1009179705
Pages:   345
Publication Date:   16 November 2023
Audience:   College/higher education ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Preface; Notation; Part I. The Kantorovich Problem: 1. An introduction to the Monge problem; 2. Discrete transport problems; 3. The Kantorovich problem; Part II. Solution of the Monge Problem with Quadratic Cost: the Brenier-McCann Theorem: 4. The Brenier theorem; 5. First order differentiability of convex functions; 6. The Brenier-McCann theorem; 7. Second order differentiability of convex functions; 8. The Monge-Ampère equation for Brenier maps; Part III. Applications to PDE and the Calculus of Variations and the Wasserstein Space: 9. Isoperimetric and Sobolev inequalities in sharp form; 10. Displacement convexity and equilibrium of gases; 11. The Wasserstein distance W2 on P2(Rn); 12. Gradient flows and the minimizing movements scheme; 13. The Fokker-Planck equation in the Wasserstein space; 14. The Euler equations and isochoric projections; 15. Action minimization, Eulerian velocities and Otto's calculus; Part IV. Solution of the Monge Problem with Linear Cost: the Sudakov Theorem: 16. Optimal transport maps on the real line; 17. Disintegration; 18. Solution to the Monge problem with linear cost; 19. An introduction to the needle decomposition method; Appendix A: Radon measures on Rn and related topics; Appendix B: Bibliographical Notes; Bibliography; Index.

Reviews

'Francesco Maggi's book is a detailed and extremely well written explanation of the fascinating theory of Monge-Kantorovich optimal mass transfer. I especially recommend Part IV's discussion of the 'linear' cost problem and its subtle mathematical resolution.' Lawrence C. Evans, University of California, Berkeley 'Over the last three decades, optimal transport has revolutionized the mathematical analysis of inequalities, differential equations, dynamical systems, and their applications to physics, economics, and computer science. By exposing the interplay between the discrete and Euclidean settings, Maggi's book makes this development uniquely accessible to advanced undergraduates and mathematical researchers with a minimum of prerequisites. It includes the first textbook accounts of the localization technique known as needle decomposition and its solution to Monge's centuries old cutting and filling problem (1781). This book will be an indispensable tool for advanced undergraduates and mathematical researchers alike.' Robert McCann, University of Toronto


Author Information

Francesco Maggi is Professor of Mathematics at the University of Texas at Austin. His research interests include the calculus of variations, partial differential equations, and optimal mass transport. He is the author of Sets of Finite Perimeter and Geometric Variational Problems published by Cambridge University Press.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

wl

Shopping Cart
Your cart is empty
Shopping cart
Mailing List