Optical Studies of Focused Ion Beam Fabricated Gan Microstructures and Nanostructures

Author:   Xiaohu Wang ,  王小虎
Publisher:   Open Dissertation Press
ISBN:  

9781361268339


Publication Date:   26 January 2017
Format:   Hardback
Availability:   Temporarily unavailable   Availability explained
The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you.

Our Price $155.76 Quantity:  
Add to Cart

Share |

Optical Studies of Focused Ion Beam Fabricated Gan Microstructures and Nanostructures


Overview

This dissertation, Optical Studies of Focused Ion Beam Fabricated GaN Microstructures and Nanostructures by Xiaohu, Wang, 王小虎, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: In this thesis, Gallium Nitride (GaN) micro- and nanostructures were fabricated based on focused ion beam (FIB) milling. The starting wafer is an epitaxial structure containing InGaN/GaN multi-quantum wells. High crystal quality structures such as the nano-cone, nanopillar array and single pillar were fabricated based on the FIB method. During the fabrication process, various approaches were designed to minimize FIB damage caused by Gallium ion bombardment. The fabrication process for nano-cone is a combination of mask preparation by FIB with subsequent reactive ion etching (RIE). For fabricating nanopillar arrays, the nanopillars were patterned directly using FIB with an optimized beam current followed by wet etching process to remove the damage. On the other hand, the single pillar is achieved by gradually decreasing the ion beam current as the diameter of the pillar becomes smaller. The first order Raman spectra for the nanopillar array reveal a strong additional peak when the diameter of the nanopillars is less than 220 nm. This peak can also be observed in GaN pillars without MQW and is clearly assigned to the surface optical (SO) mode originated from the A1 phonon in wurtzite GaN. The frequency of this SO mode is found to be sensitive with the diameter and surface roughness of the nanopillars. Temperature-variable photoluminescence (PL) measurements show that a broadband emission in the as-grown sample split into the two well-resolved bands for nanopillars and the emission band at the higher energy side quickly thermally quenched. Room temperature PL measurements on the single pillars exhibit an increasing blue-shift of the peak emission with the decreasing of the pillar diameter. Additional simulation data and excitation power dependent PL studies confirm the observation of strain relaxation in the pillar's MQW due to FIB fabrication. The temperature variable PL on the single pillar shows a monotonous blue shift as the temperature arises to 300 K. DOI: 10.5353/th_b4715342 Subjects: Microstructure - Optical propertiesNanostructured materials - Optical propertiesFocused ion beamsGallium nitride

Full Product Details

Author:   Xiaohu Wang ,  王小虎
Publisher:   Open Dissertation Press
Imprint:   Open Dissertation Press
Dimensions:   Width: 21.60cm , Height: 0.80cm , Length: 27.90cm
Weight:   0.535kg
ISBN:  

9781361268339


ISBN 10:   1361268336
Publication Date:   26 January 2017
Audience:   General/trade ,  General
Format:   Hardback
Publisher's Status:   Active
Availability:   Temporarily unavailable   Availability explained
The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you.

Table of Contents

Reviews

Author Information

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List