|
![]() |
|||
|
||||
OverviewLet $v$ be a smooth vector field on the plane, that is a map from the plane to the unit circle. The authors study sufficient conditions for the boundedness of the Hilbert transform $\textrm{H}_{v, \epsilon }f(x) := \text{p.v.}\int_{-\epsilon}^{\epsilon} f(x-yv(x))\;\frac{dy}y$ where $\epsilon$ is a suitably chosen parameter, determined by the smoothness properties of the vector field. Table of Contents: Overview of principal results; Besicovitch set and Carleson's theorem; The Lipschitz Kakeya maximal function; The $L^2$ estimate; Almost orthogonality between annuli. (MEMO/205/965) Full Product DetailsAuthor: Michael Lacey , Xiaochun LiPublisher: American Mathematical Society Imprint: American Mathematical Society Edition: New ed. Volume: v. 205, No. 965 Weight: 0.146kg ISBN: 9780821845400ISBN 10: 0821845403 Pages: 72 Publication Date: 30 May 2010 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Awaiting stock ![]() The supplier is currently out of stock of this item. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out for you. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |