Omic Association Studies with R and Bioconductor

Author:   Juan R. González ,  Alejandro Cáceres
Publisher:   Taylor & Francis Ltd
ISBN:  

9780367728106


Pages:   376
Publication Date:   18 December 2020
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $96.99 Quantity:  
Add to Cart

Share |

Omic Association Studies with R and Bioconductor


Add your own review!

Overview

After the great expansion of genome-wide association studies, their scientific methodology and, notably, their data analysis has matured in recent years, and they are a keystone in large epidemiological studies. Newcomers to the field are confronted with a wealth of data, resources and methods. This book presents current methods to perform informative analyses using real and illustrative data with established bioinformatics tools and guides the reader through the use of publicly available data. Includes clear, readable programming codes for readers to reproduce and adapt to their own data. Emphasises extracting biologically meaningful associations between traits of interest and genomic, transcriptomic and epigenomic data Uses up-to-date methods to exploit omic data Presents methods through specific examples and computing sessions Supplemented by a website, including code, datasets, and solutions

Full Product Details

Author:   Juan R. González ,  Alejandro Cáceres
Publisher:   Taylor & Francis Ltd
Imprint:   Chapman & Hall/CRC
Weight:   0.720kg
ISBN:  

9780367728106


ISBN 10:   0367728109
Pages:   376
Publication Date:   18 December 2020
Audience:   College/higher education ,  General/trade ,  Tertiary & Higher Education ,  General
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1 Introduction 2 Case examples 3 Dealing with omic data in Bioconductor 4 Genetic association studies 5 Genomic variant studies 6 Adressing batch effects 7 Transcriptomic studies 8 Epigenomic studies 9 Exposomic analysis 10 Enrichment analysis 11 Multiomic data analysis

Reviews

"""This book is a good tool for self-learning analytical strategies for omics data. It requires previous knowledge of R and focuses on getting things done...I think the book would be a good reference for masters or PhD students that have to perform their analysis and need a starting point. Also, for the practicing statistician working with omics data."" - Victor Moreno, ISCB News, July 2020 ""Omic Association Studies with R and Bioconductor is an excellent tool book for those looking to have hands-on guidance to analyze multiomics datasets using established packages. The authors provide comprehensive examples of using genomic, transcriptomic, epigenomic, and exposomic data, as well as their integration, to generate biological hypotheses and explore individual heterogeneity."" – Biometrics"


This book is a good tool for self-learning analytical strategies for omics data. It requires previous knowledge of R and focuses on getting things done...I think the book would be a good reference for masters or PhD students that have to perform their analysis and need a starting point. Also, for the practicing statistician working with omics data. - Victor Moreno, ISCB News, July 2020


Author Information

Juan R. González is an Associate Research Professor leading the Bioinformatics Research Group in Epidemiology at Barcelona Institute for Global Health. He has published extensively on methods and bioinformatics tools to detect structural variants from genomic data and to perform different types of omic association studies. Dr. González is the author of a large number of R and Bioconductor packages including state-of-the-art libraries such as SNPassoc or MAD that have been used to discover new susceptibility genetic factor for complex diseases. Alejandro Caceres is a Senior Statistician in the Bioinformatics Research Group in Epidemiology at Barcelona Institute for Global Health. He has large experience in developing new statistical methods to exploit genomic, transcriptomic and epigenomic data obtained from public repositories. Dr. Cáceres is the author of several R and Bioconductor packages that have been used, for instance, to study the role of polymorphic genomic inversions in complex diseases or to investigate how the downregulation of chromosome Y may affect age-related diseases.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List