Ocean Acoustics

Author:   John A. DeSanto
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Volume:   8
ISBN:  

9783540091486


Pages:   300
Publication Date:   01 March 1979
Format:   Hardback
Availability:   Out of stock   Availability explained


Our Price $142.56 Quantity:  
Add to Cart

Share |

Ocean Acoustics


Add your own review!

Overview

Full Product Details

Author:   John A. DeSanto
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Volume:   8
Weight:   0.645kg
ISBN:  

9783540091486


ISBN 10:   3540091483
Pages:   300
Publication Date:   01 March 1979
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Out of Print
Availability:   Out of stock   Availability explained

Table of Contents

1. Introduction.- 1.1 A Brief History.- 1.2 Outline of the Book.- References.- 2. Theoretical Methods in Ocean Acoustics.- 2.1 Conservation Laws, Fluid and Acoustic Equations.- 2.1.1 Conservation Laws and Fluid Equations.- 2.1.2 A Parabolic Equation.- 2.1.3 Perturbation Method.- 2.1.4 Combined Acoustic-Internal Wave Equations.- 2.1.5 Sound Speed.- 2.2 Propagation in Deterministic Media.- 2.2.1 One-Dimensional Problems.- a) The Pekeris Waveguide.- b) Alternative Representations.- c) Solvable Profiles.- d) Inverse Propagation.- 2.2.2 Two-Dimensional Problems.- a) Ray-Theory.- b) Corrected Parabolic Approximation.- c) Conformal Mapping.- 2.2.3 Multi-Dimensional Problems.- 2.3 Wave Propagation in a Random Medium.- 2.3.1 The Hierarchy Problem.- 2.3.2 Coherent Waves.- 2.3.3 Coherence Function and Related Work.- 2.3.4 Propagation of the Coherence Function in a Waveguide.- 2.4 Scattering from Rough Surfaces.- 2.4.1 The Rayleigh Hypothesis.- 2.4.2 Periodic Surfaces.- a) Rectangular Periodic Surfaces.- b) The Sinusoidal Surface.- 2.4.3. Arbitrary Deterministic Surfaces.- a) Green's Function Formalism.- b) Diagrams.- 2.4.4 Random Surfaces.- a) Gaussian Surfaces.- b) Dyson Equation.- c) Coherent Specular Intensity.- d) Remarks.- References.- 3. Numerical Models of Underwater Acoustic Propagation.- 3.1 Range-Independent Models.- 3.1.1 Depth-Dependent Green's Function (Impedance Formulation).- a) Matrizant Method.- 3.1.2 Direct Numerical Integration: Fast Field Program (FFP).- 3.1.3 Normal Mode (and Branch Line Integral) Models.- a) Stickler (EJP Cuts), Bartberger (Pekeris Cuts).- b) Stickler's Residue Contribution.- c) Bartberger's Residue Contribution (Pekeris Cuts).- d) Branch Cuts, and Branch Cut Integrals.- e) Numerical Considerations.- 3.1.4 Depth Dependent Green'1. Introduction.- 1.1 A Brief History.- 1.2 Outline of the Book.- References.- 2. Theoretical Methods in Ocean Acoustics.- 2.1 Conservation Laws, Fluid and Acoustic Equations.- 2.1.1 Conservation Laws and Fluid Equations.- 2.1.2 A Parabolic Equation.- 2.1.3 Perturbation Method.- 2.1.4 Combined Acoustic-Internal Wave Equations.- 2.1.5 Sound Speed.- 2.2 Propagation in Deterministic Media.- 2.2.1 One-Dimensional Problems.- a) The Pekeris Waveguide.- b) Alternative Representations.- c) Solvable Profiles.- d) Inverse Propagation.- 2.2.2 Two-Dimensional Problems.- a) Ray-Theory.- b) Corrected Parabolic Approximation.- c) Conformal Mapping.- 2.2.3 Multi-Dimensional Problems.- 2.3 Wave Propagation in a Random Medium.- 2.3.1 The Hierarchy Problem.- 2.3.2 Coherent Waves.- 2.3.3 Coherence Function and Related Work.- 2.3.4 Propagation of the Coherence Function in a Waveguide.- 2.4 Scattering from Rough Surfaces.- 2.4.1 The Rayleigh Hypothesis.- 2.4.2 Periodic Surfaces.- a) Rectangular Periodic Surfaces.- b) The Sinusoidal Surface.- 2.4.3. Arbitrary Deterministic Surfaces.- a) Green's Function Formalism.- b) Diagrams.- 2.4.4 Random Surfaces.- a) Gaussian Surfaces.- b) Dyson Equation.- c) Coherent Specular Intensity.- d) Remarks.- References.- 3. Numerical Models of Underwater Acoustic Propagation.- 3.1 Range-Independent Models.- 3.1.1 Depth-Dependent Green's Function (Impedance Formulation).- a) Matrizant Method.- 3.1.2 Direct Numerical Integration: Fast Field Program (FFP).- 3.1.3 Normal Mode (and Branch Line Integral) Models.- a) Stickler (EJP Cuts), Bartberger (Pekeris Cuts).- b) Stickler's Residue Contribution.- c) Bartberger's Residue Contribution (Pekeris Cuts).- d) Branch Cuts, and Branch Cut Integrals.- e) Numerical Considerations.- 3.1.4 Depth Dependent Green's Function (Traveling-Wave Formulation).- 3.1.5 Multipath Expansion Models.- 3.1.6 Connection Between Modes and Rays.- 3.1.7 Quantitative Model Assessment.- 3.1.8 Waveform Prediction Models.- 3.2 Range-Dependent Models.- 3.2.1 Split Step Algorithm for Parabolic Equation.- 3.2.2 Parabolic Decomposition Method.- 3.2.3 Finite Differences.- 3.2.4 Range-Dependent Normal Mode Theory.- 3.2.5 Range-Dependent Ray Theory Models.- 3.2.6 Finite Element Approach.- a) The Finite Element Method.- b) Merits/Shortcomings of the FEM.- c) Transparent Boundary Simulation Techniques.- d) Solid Domain Boundaries.- e) Fluid Domain Boundaries.- f) Combined Solid-Fluid Domain Boundaries.- g) Fluid Finite Elements.- References.- 4. Physical Modeling of Underwater Acoustics.- 4.1 Background Information.- 4.1.1 Definition and Purpose.- 4.1.2 Relationship to Ocean Experimentation.- 4.1.3 Historical Overview.- 4.2 Water Facilities.- 4.2.1 Model Tanks.- 4.2.2 Lakes and Bays.- 4.3 Targets.- 4.3.1 Wind Driven Surfaces.- 4.3.2 Fixed Surfaces.- 4.3.3 Volume Targets.- 4.4 Instrumentation and Signal Processing.- 4.4.1 Sources.- 4.4.2 Data Acquisition.- 4.4.3 Signal Processing.- 4.5 Results of Physical Model Experimentation.- 4.5.1 Scattered Intensity.- 4.5.2 Coherence Studies.- 4.5.3 Second-Order Coherence.- 4.5.4 Frequency Spreading.- 4.6 Remarks.- References.- 5. Oceanography in Underwater Acoustics.- 5.1 Properties of Seawater.- 5.2 Ocean Variability.- 5.2.1 Ocean Climatology.- 5.2.2 Ocean Weather.- 5.2.3 Internal Waves.- 5.2.4 Fine Structure.- 5.2.5 Near-Surface Structure.- References.- 6. Inverse Methods for Reflector Mapping and Sound Speed Profiling.- 6.1 The POFFIS Identity.- 6.1.1 Derivation of the POFFIS Identity.- 6.1.2 The Limited Aperture Problem for the POFFIS Identity.- 6.2 An Inverse Method for Determining Small Inhomogeneities in a Medium.- 6.2.1 An Integral Equation for Three-Dimensional Velocity Variation.- 6.2.2 Direct Inversion for Backscatter over a Medium with Two-Dimensional Velocity Variation.- 6.2.3 Direct Inversion for a Case with Separated Source and Receiver.- 6.2.4 Direct Inversion for a One-Dimensional Problem.- 6.2.5 Direct Inversion in Free Space.- References.- 7. Acoustic Probing of Space-Time Scales in the Ocean.- 7.1 Sound Probes of Ocean Currents.- 7.1.1 SOFAR Floats for Lagrangian Current Measurements.- 7.1.2 Current Measurements by Reciprocal Transmissions.- 7.2 Acoustic Fluctuations as a Measure of Ocean Dynamics.- 7.2.1 CW Transmissions and Tides.- 7.2.2 Short Pulse Transmissions Along Single Paths.- 7.2.3 Spatial and Temporal Fluctuations of CW Transmissions.- 7.2.4 Spectra of Phase and Amplitude Fluctuations.- 7.3 Sound Speed Variations and Internal Gravity Waves.- 7.3.1 Internal Gravity Wave Spectra.- 7.3.2 Fluctuations in the Index of Refraction.- 7.4 Acoustic Fluctuation Theories and Their Relationship to Ocean Dynamics.- 7.4.1 Acoustic Fluctuation Theories and Their Relationship to Ocean Dynamics.- 7.4.2 Effect of Large Scale Flows on Acoustic Amplitude and Phase.- 7.4.3 Effect of Internal Waves on Acoustic Amplitudes and Phases.- 7.4.4 Multipath Fluctuations for Stable Paths.- 7.4.5 Stability of Single Paths.- 7.5 Implications for Ocean Probing.- References.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List