|
![]() |
|||
|
||||
OverviewDieses Buch bietet eine umfassende und aktuelle Darstellung des Themenbereichs ""Numerische Lösung unrestringierter Optimierungsaufgaben mit differenzierbarer Zielfunktion"", die über die bislang existierende Lehrbuchliteratur deutlich hinausgeht. Es wendet sich in erster Linie an Studierende der Mathematik, der Wirtschaftsmathematik und der Technomathematik in mittleren und höheren Semestern, sollte aber auch erfahrenen Mathematikern einen Zugang zur aktuellen Forschung und Anwendern einen Überblick über die vorhandenen Verfahren geben. Alle besprochenen Verfahren sind ausführlich motiviert und mit einer vollständigen Konvergenzanalyse versehen, und es werden zu allen konkreten Algorithmen Tabellen mit numerischen Resultaten angegeben. In Anhängen sind die benötigten Grundlagen aus der mehrdimensionalen Analysis und der linearen Algebra sowie Testbeispiele zusammengestellt. Abgerundet wird das Buch durch ca. 150 Aufgaben unterschiedlichen Umfangs und Schwierigkeitsgrades. Full Product DetailsAuthor: Carl Geiger , Christian KanzowPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 1999 ed. Dimensions: Width: 15.50cm , Height: 2.00cm , Length: 23.50cm Weight: 0.569kg ISBN: 9783540662204ISBN 10: 3540662200 Pages: 350 Publication Date: 09 September 1999 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Out of stock ![]() The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Language: German Table of Contents1. Einfuhrung.- 2. Optimalitatskriterien.- Aufgaben.- 3. Konvexe Funktionen.- Aufgaben.- 4. Ein allgemeines Abstiegsverfahren.- Aufgaben.- 5. Schrittweitenstrategien.- 5.1 Armijo-Regel.- 5.2 Wolfe-Powell-Schrittweitenstrategie.- 5.3 Strenge Wolfe-Powell-Schrittweitenstrategie.- Aufgaben.- 6. Schrittweitenalgorithmen.- 6.1 Armijo-Regel.- 6.2 Wolfe-Powell-Schrittweitenstrategie.- 6.3 Strenge Wolfe-Powell-Schrittweitenstrategie.- Aufgaben.- 7. Konvergenzraten und Charakterisierungen.- Aufgaben.- 8. Gradientenverfahren.- 8.1 Das Gradientenverfahren.- 8.2 Konvergenz bei quadratischer Zielfunktion.- 8.3 Gradientenahnliche Verfahren.- Aufgaben.- 9. Newton-Verfahren.- 9.1 Das lokale Newton-Verfahren.- 9.2 Ein globalisiertes Newton-Verfahren.- 9.3 Hinweise zur Implementation.- 9.4 Numerische Resultate.- Aufgaben.- 10. Inexakte Newton-Verfahren.- 10.1 Das lokale inexakte Newton-Verfahren.- 10.2 Ein globalisiertes inexaktes Newton-Verfahren.- 10.3 Hinweise zur Implementation.- 10.4 Numerische Resultate.- Aufgaben.- 11. Quasi-Newton-Verfahren.- 11.1 Herleitung einiger Quasi-Newton-Formeln.- 11.2 Lokale Konvergenz des PSB-Verfahrens.- 11.3 Lokale Konvergenz des BFGS-Verfahrens.- 11.4 Globalisierte Quasi-Newton-Verfahren.- 11.5 Konvergenz bei gleichmassig konvexen Funktionen.- 11.6 Weitere Quasi-Newton-Formeln.- 11.7 Hinweise zur Implementation.- 11.8 Numerische Resultate.- Aufgaben.- 12. Limited Memory Quasi-Newton-Verfahren.- 12.1 Herleitung des Limited Memory BFGS-Verfahrens.- 12.2 Konvergenz bei gleichmassig konvexen Funktionen.- 12.3 Hinweise zur Implementation.- 12.4 Numerische Resultate.- Aufgaben.- 13. CG-Verfahren.- 13.1 Das CG-Verfahren fur lineare Gleichungssysteme.- 13.2 Das Fletcher-Reeves-Verfahren.- 13.3 Das Polak-Ribiere-Verfahren.- 13.4 Ein modifiziertes Polak-Ribiere-Verfahren.- 13.5 Weitere CG-Verfahren.- 13.6 Numerische Resultate.- Aufgaben.- 14. Trust-Region-Verfahren.- 14.1 Das Trust-Region-Teilproblem.- 14.2 Die KKT-Bedingungen.- 14.3 Eine exakte Penalty-Funktion.- 14.4 Zur Loesung des Trust-Region-Teilproblems.- 14.5 Trust-Region-Newton-Verfahren.- 14.6 Teilraum-Trust-Region-Newton-Verfahren.- 14.7 Inexakte Trust-Region-Newton-Verfahren.- 14.8 Trust-Region-Quasi-Newton-Verfahren.- 14.9 Numerische Resultate.- Aufgaben.- A. Grundlagen aus der mehrdimensionalen Analysis.- B. Grundlagen aus der linearen Algebra.- C. Testbeispiele.ReviewsFrom the reviews: <p> The book derives from different lectures given by the authors at the University of Hamburg. The authors consider only numerical methods for unconstrained optimization problems and assume the function to be minimized is continously differentiable. The book is clearly written and contains many examples. [..] (H. Benker (Merseburg) - Zentralblatt MATH Database 0934.65062) Author InformationTab Content 6Author Website:Countries AvailableAll regions |