|
![]() |
|||
|
||||
OverviewKonvexe Optimierungsprobleme mit einer nichtglatten Zielfunktion treten in vielen Anwendungen auf, beispielsweise im Zusammenhang mit Penalty-Verfahren fur differenzierbare Optimierungsprobleme, mit der Lagrange-Relaxation bei kombinatorischen Optimierungsproblemen oder bei der Strukturoptimierung von Stabwerken. Die wichtigsten numerischen Verfahren zur Losung solcher Optimierungsprobleme sind Subgradienten- und Bundle-Verfahren. Das Buch gibt eine kompakte Einfuhrung in die Grundlagen dieser Verfahren, die den Leser in die Lage versetzt, einfache Versionen der Verfahren selbst zu implementieren. Full Product DetailsAuthor: Walter AltPublisher: Springer Fachmedien Wiesbaden Imprint: Vieweg+Teubner Verlag Edition: 2004 ed. Dimensions: Width: 17.00cm , Height: 1.00cm , Length: 24.00cm Weight: 0.364kg ISBN: 9783519005131ISBN 10: 3519005131 Pages: 176 Publication Date: 28 October 2004 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Language: German Table of Contents1 Einführung.- 1.1 Konvexe Mengen und Funktionen.- 1.2 Konvexe Optimierungsaufgaben.- 1.3 Warum spezielle Verfahren?.- 2 Konvexe Mengen und Funktionen.- 2.1 Konvexe Mengen.- 2.2 Projektion auf konvexe Mengen.- 2.3 Trennungssätze.- 2.4 Konvexe Funktionen.- 2.5 Operationen mit konvexen Funktionen.- 2.6 Affine Minoranten.- 2.7 Lokale Lipschitz-Stetigkeit.- 2.8 Subdifferential und Richtungsableitung.- 2.9 Maximumfunktionen.- 3 Konvexe Optimierungsprobleme.- 3.1 Unrestringierte Probleme.- 3.2 Abstiegsrichtungen.- 3.3 Probleme mit allgemeinen konvexen Restriktionen.- 3.4 Lineare Nebenbedingungen.- 4 Das Subgradientenverfahren.- 4.1 Das Verfahren.- 4.2 Konvergenzbetrachtungen.- 4.3 Numerische Beispiele.- 5 Approximative Ableitungen.- 5.1 Approximation des Subdifferentials.- 5.2 Approximation der Richtungsableitung.- 5.3 Approximative Minima.- 5.4 Approximative Abstiegsrichtungen.- 6 Approximative Abstiegsverfahren.- 6.1 Grundlegende Verfahrenskonzepte.- 6.2 Das Schrittweitenverfahren.- 6.3 Konstruktion des Bundles.- 6.4 Ein implementierbares Abstiegsverfahren.- 7 Bundle-Verfahren.- 7.1 Stopp-Kriterien.- 7.2 Allgemeiner Verfahrensablauf.- 7.3 Numerische Beispiele.- 8 Bundle-Trust-Region-Verfahren.- 8.1 Grundlage des Verfahrens.- 8.2 Das Trust-Region-Problem.- 8.3 Das Verfahrenskonzept.- 8.4 Implementierung des Verfahrens.- 8.5 Das Bundle-Trust-Region-Verfahren.- 8.6 Konvergenz des Verfahrens.- 8.7 Numerische Beispiele.- 8.8 Probleme mit linearen Restriktionen.- Übungsaufgaben.ReviewsAuthor InformationProf. Dr. Walter Alt, Universität Jena Tab Content 6Author Website:Countries AvailableAll regions |