Numerische Mathematik: Das Grundwissen für jedermann

Author:   Hans-Görg Roos ,  Hubert Schwetlick
Publisher:   Springer Fachmedien Wiesbaden
Edition:   1999 ed.
ISBN:  

9783519002215


Pages:   220
Publication Date:   01 January 1999
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $79.17 Quantity:  
Add to Cart

Share |

Numerische Mathematik: Das Grundwissen für jedermann


Overview

Dieses Lehrbuch ist eine verstandlich geschriebene, kompakte Einfuhrung in die numerische Mathematik. Es wendet sich an all jene, die numerische Verfahren zur Computersimulation realer Prozesse mittels mathematischer Modelle einsetzen und die Grundgedanken der dazu geeigneten Verfahren verstehen wollen. Schwerpunkte bilden numerische Verfahren fur lineare und nichtlineare Gleichungssysteme, Eigenwertaufgaben, Interpolation und Approximation, numerische Differentiation und Integration sowie fur Anfangswertaufgaben bei gewohnlichen und Randwertaufgaben bei partiellen Differentialgleichungen. Ausserdem geben die Autoren, die uber langjahrige Lehr- und Forschungserfahrungen verfugen, zahlreiche Hinweise auf moderne vertiefende Literatur und aktuelle verfugbare Software.

Full Product Details

Author:   Hans-Görg Roos ,  Hubert Schwetlick
Publisher:   Springer Fachmedien Wiesbaden
Imprint:   Vieweg+Teubner Verlag
Edition:   1999 ed.
Dimensions:   Width: 16.00cm , Height: 1.20cm , Length: 24.00cm
Weight:   0.366kg
ISBN:  

9783519002215


ISBN 10:   3519002213
Pages:   220
Publication Date:   01 January 1999
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.
Language:   German

Table of Contents

1 Ziele und Grundprinzipien der Numerischen Mathematik.- 1.1 Modell, Algorithmus, Computerexperiment.- 1.2 Grundprinzipien der Algorithmisierung.- 2 Direkte Verfahren für lineare Gleichungssysteme.- 2.1 Der Gaußsche Algorithmus.- 2.2 Störungstheorie, Fehlerabschätzung, iterative Verbesserung.- 2.3 Lineare Quadratmittelprobleme.- 2.4 Hinweise auf Software.- 2.5 Übungsaufgaben.- 3 Iterationsverfahren für Gleichungssysteme.- 3.1 Gewöhnliches Iterationsverfahren und Kontraktionssatz.- 3.2 Stationäre Einschrittverfahren für lineare Gleichungssysteme.- 3.3 Krylov-Teilraum-Verfahren.- 3.4 Verfahren für nichtlineare Gleichungssysteme.- 3.5 Hinweise auf Software.- 3.6 Übungsaufgaben.- 4 Eigenwertprobleme.- 4.1 Transformationsverfahren.- 4.2 Teilraumiterationsverfahren.- 4.3 Hinweise auf Software.- 4.4 Übungsaufgaben.- 5 Interpolation und Approximation.- 5.1 Interpolation.- 5.2 Approximation.- 5.3 Hinweise auf Software und ein Ausblick: Mehrdimensionale Interpolation und Approximation.- 5.4 Übungsaufgaben.- 6 Numerische Differentiation und Integration.- 6.1 Differenzenformeln zur Differentiation.- 6.2 Zusammengesetzte Quadraturformeln.- 6.3 Erhöhung der Konvergenzordnung durch Extrapolation.- 6.4 Gauß-Formeln und verwandte optimale Quadraturformeln.- 6.5 Übungsaufgaben.- 7 Anfangswertaufgaben.- 7.1 Explizite Einschrittverfahren.- 7.2 Mehrschrittverfahren.- 7.3 A-Stabilität und steife Systeme.- 7.4 Hinweise auf Software und ein Ausblick: Algebro-Differentialgleichungen.- 7.5 Übungsaufgaben.- 8 Randwertaufgaben.- 8.1 Eine Einführung in die grundlegenden Diskretisierungstechniken.- 8.2 Spline-Kollokation.- 8.3 Die Methode der finiten Elemente.- 8.4 Raum und Zeit.- 8.5 Hinweise auf Software.- 8.6 Übungsaufgaben.- Sachwortverzeichnis.

Reviews

Author Information

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List