Numerical solution of Variational Inequalities by Adaptive Finite Elements

Author:   Franz-Theo Suttmeier
Publisher:   Springer Fachmedien Wiesbaden
Edition:   2008 ed.
ISBN:  

9783834806642


Pages:   161
Publication Date:   28 August 2008
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $145.17 Quantity:  
Add to Cart

Share |

Numerical solution of Variational Inequalities by Adaptive Finite Elements


Overview

This work describes a general approach to a posteriori error estimation and adaptive mesh design for ?nite element models where the solution is subjected to inequality constraints. This is an extension to variational inequalities of the so-called Dual-Weighted-Residual method (DWR method) which is based on a variational formulation of the problem and uses global duality arguments for deriving weighted a posteriori error estimates with respect to arbitrary functionals of the error. In these estimates local residuals of the computed solution are multiplied by sensitivity factors which are obtained from a - merically computed dual solution. The resulting local error indicators are used in a feed-back process for generating economical meshes which are tailored - cording to the particular goal of the computation. This method is developed here for several model problems. Based on these examples, a general concept is proposed, which provides a systematic way of adaptive error control for problems stated in form of variational inequalities. F¨ ur Alexandra, Katharina und Merle Contents 1 Introduction 1 2 Models in elasto-plasticity 13 2. 1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . 14 2. 2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 The dual-weighted-residual method 23 3. 1 A model situation in plasticity . . . . . . . . . . . . . . . . . . 24 3. 2 A posteriori error estimate . . . . . . . . . . . . . . . . . . . . . 25 3. 3 Evaluation of a posteriori error bounds . . . . . . . . . . . . . . 26 3. 4 Strategies for mesh adaptation . . . . . . . . . . . . . . . . . . 28 3. 5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4 Extensions to stabilised schemes 33 4. 1 Discretisation for themembrane-problem . . . . . . . . . . . . 35 4. 2 A posteriori error analysis . . . . . . . . . . . . . . . . . . . . . 37 4. 3 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . .

Full Product Details

Author:   Franz-Theo Suttmeier
Publisher:   Springer Fachmedien Wiesbaden
Imprint:   Vieweg+Teubner Verlag
Edition:   2008 ed.
Weight:   0.259kg
ISBN:  

9783834806642


ISBN 10:   3834806641
Pages:   161
Publication Date:   28 August 2008
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.
Language:   German

Table of Contents

Reviews

Author Information

Dr. Franz-Theo Suttmeier is a professor of Scientific Computing at the Institute of Applied Analysis and Numerics at the University of Siegen.

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List