Numerical Solution of the Incompressible Navier-Stokes Equations

Author:   L. Quartapelle
Publisher:   Birkhauser Verlag AG
Edition:   1993 ed.
Volume:   113
ISBN:  

9783764329358


Pages:   292
Publication Date:   01 September 1993
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $475.20 Quantity:  
Add to Cart

Share |

Numerical Solution of the Incompressible Navier-Stokes Equations


Add your own review!

Overview

Full Product Details

Author:   L. Quartapelle
Publisher:   Birkhauser Verlag AG
Imprint:   Birkhauser Verlag AG
Edition:   1993 ed.
Volume:   113
Dimensions:   Width: 15.50cm , Height: 1.90cm , Length: 23.50cm
Weight:   1.340kg
ISBN:  

9783764329358


ISBN 10:   3764329351
Pages:   292
Publication Date:   01 September 1993
Audience:   College/higher education ,  Professional and scholarly ,  Postgraduate, Research & Scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1 The incompressible Navier-Stokes equations.- 1.1 Introduction.- 1.2 Incompressible Navier-Stokes equations.- 1.3 Organization of the book.- 1.4 Some references.- 2 Nonprimitive variable formulations in 2D.- 2.1 Introduction.- 2.2 Vorticity-stream function equations.- 2.3 Biharmonic formulation.- 2.4 Coupled vorticity-stream function equations.- 2.5 Vorticity integral conditions.- 2.6 Split vorticity-stream function equations.- 2.7 One-dimensional integral conditions.- 2.8 Orthogonal projection operator.- 2.9 Factorized vorticity-stream function problem.- 2.10 Numerical schemes: local discretizations.- 2.11 Numerical schemes: spectral method.- 2.12 Higher-order time discretization.- 2.13 Rotationally symmetric equations.- 3 Nonprimitive variable formulations in 3D.- 3.1 Introduction.- 3.2 Vorticity vector equation.- 3.3 Æ-?-A formulation.- 3.4 qs-Æ-? formulation.- 3.5 Irreducible vorticity integral conditions.- 3.6 Æ-? formulation.- 3.7 Conclusions.- 4 Vorticity-velocity representation.- 4.1 Introduction.- 4.2 Three-dimensional equations.- 4.3 Two-dimensional equations.- 5 Primitive variable formulation.- 5.1 Introduction.- 5.2 Pressure-velocity equations.- 5.3 Pressure integral conditions.- 5.4 Decomposition scheme.- 5.5 Equations for plane channel flows.- 5.6 Direct Stokes solver.- 5.7 General boundary conditions.- 5.8 Extension to compressible equations.- 6 Evolutionary pressure—velocity equations.- 6.1 Introduction.- 6.2 Unsteady Stokes problem.- 6.3 Space-time integral conditions.- 6.4 Drag on a sphere in nonuniform motion.- 6.5 Pressure dynamics in incompressible flows.- 6.6 Comments.- 7 Fractional-step projection method.- 7.1 Introduction.- 7.2 Ladyzhenskaya theorem.- 7.3 Fractional-step projection method.- 7.4 Poisson equation for pressure.- 7.5 Afinite element projection method.- 8 Incompressible Euler equations.- 8.1 Introduction.- 8.2 Incompressible Euler equations.- 8.3 Taylor-Galerkin method.- 8.4 Euler equations for vortical flows.- 8.5 Vorticity-velocity formulation.- 8.6 Nonprimitive variable formulations.- APPENDICES.- A Vector differential operators.- A.1 Orthogonal curvilinear coordinates.- A.2 Differential operators.- A.3 Cylindrical coordinates.- A.3.1 Definition.- A.3.2 Gradient, divergence and curl.- A.3.3 Laplace and advection operators.- A.4 Spherical coordinates.- A.4.1 Definition.- A.4.2 Gradient, divergence and curl.- A.4.3 Laplace and advection operators.- B Separation of vector elliptic equations.- B.1 Introduction.- B.2 Polar coordinates.- B.3 Spherical coordinates on the unit sphere.- B.4 Cylindrical coordinates.- B.5 Spherical coordinates.- C Spatial difference operators.- C.1 Introduction.- C.2 2D equation: four-node bilinear element.- C.3 3D equation: eight-node trilinear element.- D Time derivative of integrals over moving domains.- D.1 Circulation along a moving curve.- D.2 Flux across a moving surface.- D.3 Integrals over a moving volume.- References.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List