|
|
|||
|
||||
OverviewThe book provides an easily accessible computationally oriented introduction into the numerical solution of stochastic differential equations using computer experiments. It develops in the reader an ability to apply numerical methods solving stochastic differential equations in their own fields. Furthermore, it creates an intuitive understanding of the necessary theoretical background from stochastic and numeric analysis. The book is related to the more theoretical monograph P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, 1992, but can be independently used. It provides solutions to over 100 exercises used in this monograph to illustrate the theory. Corresponding Turbo Pascal programs are given on a floppy disk; furthermore commentaries on the programs and their use are carefully worked out in the book. Full Product DetailsAuthor: Peter Eris Kloeden , Eckhard Platen , Henri SchurzPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 1st ed. 1994. Corr. 3rd printing 2002 Dimensions: Width: 15.50cm , Height: 1.60cm , Length: 23.50cm Weight: 0.980kg ISBN: 9783540570745ISBN 10: 3540570748 Pages: 294 Publication Date: 20 December 1993 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents1: Background on Probability and Statistics.- 1.1 Probability and Distributions.- 1.2 Random Number Generators.- 1.3 Moments and Conditional Expectations.- 1.4 Random Sequences.- 1.5 Testing Random Numbers.- 1.6 Markov Chains as Basic Stochastic Processes.- 1.7 Wiener Processes.- 2: Stochastic Differential Equations.- 2.1 Stochastic Integration.- 2.2 Stochastic Differential Equations.- 2.3 Stochastic Taylor Expansions.- 3: Introduction to Discrete Time Approximation.- 3.1 Numerical Methods for Ordinary Differential Equations.- 3.2 A Stochastic Discrete Time Simulation.- 3.3 Pathwise Approximation and Strong Convergence.- 3.4 Approximation of Moments and Weak Convergence.- 3.5 Numerical Stability.- 4: Strong Approximations.- 4.1 Strong Taylor Schemes.- 4.2 Explicit Strong Schemes.- 4.3 Implicit Strong Approximations.- 4.4 Simulation Studies.- 5: Weak Approximations.- 5.1 Weak Taylor Schemes.- 5.2 Explicit Weak Schemes and Extrapolation Methods.- 5.3 Implicit Weak Approximations.- 5.4 Simulation Studies.- 5.5 Variance Reducing Approximations.- 6: Applications.- 6.1 Visualization of Stochastic Dynamics.- 6.2 Testing Parametric Estimators.- 6.3 Filtering.- 6.4 Functional Integrals and Invariant Measures.- 6.5 Stochastic Stability and Bifurcation.- 6.6 Simulation in Finance.- References.- List of PC-Exercises.- Frequently Used Notations.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |