|
![]() |
|||
|
||||
OverviewThis book explains how computer software is designed to perform the tasks required for sophisticated statistical analysis. For statisticians, it examines the nitty-gritty computational problems behind statistical methods. For mathematicians and computer scientists, it looks at the application of mathematical tools to statistical problems. The first half of the book offers a basic background in numerical analysis that emphasizes issues important to statisticians. The next several chapters cover a broad array of statistical tools, such as maximum likelihood and nonlinear regression. The author also treats the application of numerical tools; numerical integration and random number generation are explained in a unified manner reflecting complementary views of Monte Carlo methods. Each chapter contains exercises that range from simple questions to research problems. Most of the examples are accompanied by demonstration and source code available from the author's website. New in this second edition are demonstrations coded in R, as well as new sections on linear programming and the Nelder–Mead search algorithm. Full Product DetailsAuthor: John MonahanPublisher: Cambridge University Press Imprint: Cambridge University Press (Virtual Publishing) Edition: 2nd Revised edition ISBN: 9780511977176ISBN 10: 0511977174 Publication Date: 01 June 2011 Audience: College/higher education , Tertiary & Higher Education Format: Undefined Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsReview from the previous edition '... an excellent tool both for self-study and for classroom teaching. It summarizes the state of the art well and provides a solid basis, through the programs that go with the book, for numerical experimentation and further development. All in all, this is a good book to have ... I recommend it.' D. Denteneer, Mathematics of Computing Review from the previous edition: '... this book grew out of notes for a statistical computing course ... The goal of this course was to prepare the doctoral students with the computing tools needed for statistical research. I very much liked this book and recommend it for this use.' Jaromir Antoch, Zentralblatt fur Mathematik Review from the previous edition: '... a really nice introduction to numerical analysis. All the classical subjects of a numerical analysis course are discussed in a surprisingly short and clear way ... When adapting the examples, the first half of the book can be used as a numerical analysis course for any other discipline ...' Adhemar Bultheel, Bulletin of the Belgian Mathematical Society Review from the previous edition: '... an extremely readable book. This would be an excellent book for a graduate-level course in statistical computing.' Journal of the American Statistical Association Author InformationJohn F. Monahan is a Professor of Statistics at North Carolina State University where he joined the faculty in 1978 and has been a professor since 1990. His research has appeared in numerous computational as well as statistical journals. He is also the author of A Primer on Linear Models (2008). Tab Content 6Author Website:Countries AvailableAll regions |