|
![]() |
|||
|
||||
OverviewConservation laws are the mathematical expression of the principles of conservation and provide effective and accurate predictive models of our physical world. Although intense research activity during the last decades has led to substantial advances in the development of powerful computational methods for conservation laws, their solution remains a challenge and many questions are left open; thus it is an active and fruitful area of research. Numerical Methods for Conservation Laws: From Analysis to Algorithms: offers the first comprehensive introduction to modern computational methods and their analysis for hyperbolic conservation laws, building on intense research activities for more than four decades of development; discusses classic results on monotone and finite difference/finite volume schemes, but emphasizes the successful development of high-order accurate methods for hyperbolic conservation laws; addresses modern concepts of TVD and entropy stability, strongly stable Runge-Kutta schemes, and limiter-based methods before discussing essentially nonoscillatory schemes, discontinuous Galerkin methods, and spectral methods; explores algorithmic aspects of these methods, emphasizing one- and two-dimensional problems and the development and analysis of an extensive range of methods; includes MATLAB software with which all main methods and computational results in the book can be reproduced; and demonstrates the performance of many methods on a set of benchmark problems to allow direct comparisons. Code and other supplemental material are available online at www.siam.org/books/cs18. Full Product DetailsAuthor: Jan S. HesthavenPublisher: Society for Industrial & Applied Mathematics,U.S. Imprint: Society for Industrial & Applied Mathematics,U.S. Weight: 1.260kg ISBN: 9781611975093ISBN 10: 1611975093 Pages: 576 Publication Date: 01 December 2017 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Temporarily unavailable ![]() The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you. Table of ContentsReviewsAuthor InformationJan S. Hesthaven is Dean of Basic Sciences, Professor of Mathematics, and holds the Chair of Computational Mathematics and Simulation Science at Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland. Prior to joining EPFL in 2013, he was Professor of Applied Mathematics at Brown University. He has worked for more than two decades on the development, analysis, and application of modern computational methods for linear and nonlinear wave problems, with an emphasis on high-order accurate methods. He is an Alfred P. Sloan Fellow (2001), an NSF Career award winner (2002), and a SIAM Fellow (2014). Tab Content 6Author Website:Countries AvailableAll regions |