Numerical Integration of Space Fractional Partial Differential Equations: Vol 1 - Introduction to Algorithms and Computer Coding in R

Author:   Younes Salehi ,  William E. Schiesser
Publisher:   Springer International Publishing AG
ISBN:  

9783031012839


Pages:   188
Publication Date:   27 November 2017
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $171.57 Quantity:  
Add to Cart

Share |

Numerical Integration of Space Fractional Partial Differential Equations: Vol 1 - Introduction to Algorithms and Computer Coding in R


Add your own review!

Overview

Partial differential equations (PDEs) are one of the most used widely forms of mathematics in science and engineering. PDEs can have partial derivatives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the development and use of SFPDEs, with the discussion divided as: Vol 1: Introduction to Algorithms and Computer Coding in R Vol 2: Applications from Classical Integer PDEs. Various definitions of space fractional derivatives have been proposed. We focus on the Caputo derivative, with occasional reference to the Riemann-Liouville derivative. The Caputo derivative is defined as a convolution integral. Thus, rather than being local (with a value at a particular point in space), the Caputo derivative is non-local (it is based on an integration in space), which is one of the reasons that it has properties not shared by integer derivatives. A principal objective of the two volumes is to provide the reader with a set of documented R routines that are discussed in detail, and can be downloaded and executed without having to first study the details of the relevant numerical analysis and then code a set of routines. In the first volume, the emphasis is on basic concepts of SFPDEs and the associated numerical algorithms. The presentation is not as formal mathematics, e.g., theorems and proofs. Rather, the presentation is by examples of SFPDEs, including a detailed discussion of the algorithms for computing numerical solutions to SFPDEs and a detailed explanation of the associated source code.

Full Product Details

Author:   Younes Salehi ,  William E. Schiesser
Publisher:   Springer International Publishing AG
Imprint:   Springer International Publishing AG
Weight:   0.394kg
ISBN:  

9783031012839


ISBN 10:   3031012836
Pages:   188
Publication Date:   27 November 2017
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.
Language:   English

Table of Contents

Reviews

Author Information

My research focus is applied mathematics broadly. This includes numerical linear algebra, optimization and solving differential equations. My primary research interest concerns the areas of numerical analysis, scientific computing and high performance computing with particular emphasis on the numerical solution of ordinary differential equations (ODEs) and partial differential equations (PDEs). One focus of my work is programming efficient numerical methods for ODEs and PDEs. I have extensive experience in MATLAB, Maple, Mathematica and R programming of transportable numerical method routines, but I am also experienced in programming in C, C++ and C#, and could readily apply these programming systems to numerical ODE/PDEs. Recently, I have become interested in fractional differential equations (FDEs), especially the numerical solution of fractional initial value problems (FIVPs) and space fractional differential equations (SFPDEs).William E. Schiesser is Emeritus McCann Professor of Computational Biomedical Engineering and Chemical and Biomolecular Engineering, and Professor of Mathematics at Lehigh University. His research is directed toward numerical methods and associated software for ordinary, differential-algebraic and partial differential equations (ODE/DAE/PDEs). He is the author, coauthor or coeditor of 18 books, and his ODE/DAE/PDE computer routines have been accessed by some 5,000 colleges and universities, corporations and government agencies.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List