Numerical Computation 1: Methods, Software, and Analysis

Author:   Christoph W. Ueberhuber
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   1997 ed.
ISBN:  

9783540620587


Pages:   474
Publication Date:   27 February 1997
Replaced By:   9783540425441
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $237.47 Quantity:  
Add to Cart

Share |

Numerical Computation 1: Methods, Software, and Analysis


Overview

This book is the first part of a modern, two-volume introduction to numerical computation, which strongly emphasizes software aspects. It can serve as a textbook for courses on numerical analysis, particularly for engineers. The book can also be used as a reference book and it includes an extensive bibliography. The author is a well-known specialist in numerical analysis who was involved in the creation of the software package QUADPACK.

Full Product Details

Author:   Christoph W. Ueberhuber
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   1997 ed.
Dimensions:   Width: 15.50cm , Height: 2.50cm , Length: 23.50cm
Weight:   1.520kg
ISBN:  

9783540620587


ISBN 10:   3540620583
Pages:   474
Publication Date:   27 February 1997
Audience:   College/higher education ,  Professional and scholarly ,  Postgraduate, Research & Scholarly ,  Professional & Vocational
Replaced By:   9783540425441
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1 Scientific Modeling.- 1.1 Reality Versus Model.- 1.2 The Model Subject and the Model.- 1.2.1 The Purpose of a Model.- 1.3 The Model Subject and Reality.- 1.4 Model Building.- 1.4.1 Problem Specification.- 1.4.2 Creating a Structural Concept.- 1.4.3 Choosing and Designing a Model.- 1.4.4 Establishing Parameter Values.- 1.4.5 Tests and Validation.- 2 Fundamental Principles of Numerical Methods.- 2.1 From Application Problems to their Numerical Solution.- 2.1.1 Case Study: Pendulum.- 2.1.2 Qualitative and Quantitative Problems.- 2.2 Numerical Problems.- 2.2.1 Numerical Problems.- 2.2.2 Categories of Numerical Problems.- 2.2.3 The Accuracy of Numerical Results.- 2.3 Types of Errors in Numerics.- 2.3.1 Model Errors.- 2.3.2 Data Errors.- 2.3.3 Algorithm Errors.- 2.3.4 Rounding Errors.- 2.3.5 Error Hierarchy.- 2.4 The Condition of Mathematical Problems.- 2.4.1 Perturbed and Unperturbed Problems.- 2.4.2 The Absolute Condition Number.- 2.4.3 The Relative Condition Number.- 2.4.4 Narrowing the Problem Class.- 2.4.5 Calculating Condition Numbers Using Differentiation.- 2.4.6 Case Study: Quadratic Equation.- 2.4.7 Ill-Conditioned Problems.- 2.4.8 Ill-Posed Problems.- 2.5 The Condition of Application Problems.- 2.6 The Mathematical Elements of Condition Estimation.- 2.6.1 The Condition of Direct Mathematical Problems.- 2.6.2 The Condition of Inverse Mathematical Problems.- 2.7 Validation of Numerical Computations.- 2.7.1 The Uncertainty of Numerical Computations.- 2.7.2 Validation of Mathematical Models.- 2.7.3 Sensitivity Analysis and Error Estimation.- 2.7.4 Validation of Numerical Software.- 3 Computers for Numerical Data Processing.- 3.1 Processors.- 3.1.1 Pipelining.- 3.1.2 Superpipeline Architecture.- 3.1.3 Superscalar Architectures.- 3.1.4 Vector Processors.- 3.2 Memory.- 3.2.1 Memory Hierarchy.- 3.2.2 Addressing Schemes.- 3.2.3 Registers.- 3.2.4 Cache Memory.- 3.2.5 Virtual Memory.- 3.2.6 Interleaved Memory.- 3.3 Performance Quantification.- 3.3.1 The Notion of Performance (Power).- 3.3.2 Time as a Factor in Performance.- 3.4 Analytical Performance Assessment.- 3.4.1 Peak Performance.- 3.4.2 Instruction Performance.- 3.4.3 Performance of Vector Processors.- 3.4.4 The Influence of Memory on Performance.- 3.5 Empirical Performance Assessment.- 3.5.1 Temporal Performance.- 3.5.2 Empirical Instruction Performance.- 3.5.3 Empirical Floating-Point Performance.- 3.5.4 Empirical Performance of Vector Processors.- 4 Numerical Data and Numerical Operations.- 4.1 Mathematical Data.- 4.1.1 Fundamental Mathematical Data.- 4.1.2 Algebraic Data.- 4.1.3 Analytic Data.- 4.2 Numerical Data on Computers.- 4.2.1 Fundamental Numerical Data.- 4.2.2 Algebraic Data.- 4.2.3 Analytic Data.- 4.2.4 Numerical Data Types.- 4.3 Operations on Numerical Data.- 4.3.1 Arithmetic Operations.- 4.3.2 Algebraic Operations.- 4.3.3 Array Processing in Fortran 90.- 4.3.4 Analytic Operations.- 4.4 Number Systems on Computers.- 4.4.1 INTEGER Number Systems.- 4.4.2 Fixed-Point Number Systems.- 4.4.3 Floating-Point Number Systems.- 4.5 Structure of Floating-Point Systems.- 4.5.1 The Number of Floating-Point Numbers.- 4.5.2 Largest and Smallest Floating-Point Numbers.- 4.5.3 Distances Between Floating-Point Numbers.- 4.5.4 Relative Distances Between Floating-Point Numbers.- 4.5.5 Case Study: IF(10, 6, -9, 9, true).- 4.6 Standardization of Floating-Point Number Systems.- 4.6.1 The IEEE Standard for Floating-Point Numbers.- 4.6.2 Hidden Bit.- 4.6.3 Infinity, NaNs, and Signed Zero.- 4.6.4 Impact on Programming Languages.- 4.7 Arithmetics for Floating-Point Systems.- 4.7.1 Rounding Functions.- 4.7.2 Rounding Error.- 4.7.3 Rounding and Arithmetic Operations.- 4.7.4 Implementation of a Floating-Point Arithmetic.- 4.7.5 Multiple-Precision Software.- 4.8 Inquiry Functions and Manipulation of Numbers in Fortran 90.- 4.8.1 Parameters for Floating-Point Numbers.- 4.8.2 Characteristics of Floating-Point Numbers.- 4.8.3 The Distance Between Floating-Point Numbers, Rounding.- 4.8.4 Manipulation of Floating-Point Numbers.- 4.8.5 Parameters in INTEGER Numbers.- 4.8.6 Case Study: Multiple Products.- 4.9 Operations with Algebraic Data.- 4.10 Operations with Arrays.- 4.10.1 BLAS.- 4.11 Operations with Analytic Data.- 4.11.1 Representation of Functions.- 4.11.2 Implementation of Functions.- 4.11.3 Operations with Functions.- 4.11.4 Functions as Results.- 5 Numerical Algorithms.- 5.1 The Intuitive Notion of an Algorithm.- 5.2 Properties of Algorithms.- 5.2.1 Abstraction.- 5.2.2 Generality.- 5.2.3 Finiteness.- 5.2.4 Termination.- 5.2.5 Deterministic Algorithms.- 5.2.6 Determinate Algorithms.- 5.3 Existence of Algorithms.- 5.3.1 Precise Definitions of Algorithm .- 5.3.2 Computable Functions.- 5.4 Practical Solvability of Problems.- 5.5 Complexity of Algorithms.- 5.5.1 Abstract Computer Models.- 5.5.2 Theoretical Execution Cost.- 5.5.3 Asymptotic Complexity of Algorithms.- 5.5.4 Problem Complexity.- 5.5.5 Case Study: Multiplication of Matrices.- 5.5.6 Practical Effort Determination.- 5.6 Representation of Algorithms.- 5.6.1 Fortran 90.- 5.6.2 Pseudocode.- 5.7 Influence of Rounding Errors on Numerical Algorithms.- 5.7.1 Arithmetic Algorithms.- 5.7.2 Implementation of Arithmetic Algorithms.- 5.7.3 Error Propagation.- 5.7.4 Error Propagation Analysis.- 5.8 Case Study: Floating-Point Summation.- 5.8.1 Pairwise Summation.- 5.8.2 Compensated Summation.- 5.8.3 Comparison of Summation Methods.- 5.8.4 Ascending Summation.- 6 Numerical Programs.- 6.1 The Quality of Numerical Programs.- 6.1.1 Reliability.- 6.1.2 Portability.- 6.1.3 Efficiency.- 6.2 Reasons for Poor Efficiency.- 6.2.1 Lack of Parallelism.- 6.2.2 Lack of Locality of Reference.- 6.2.3 Inadequate Memory Access Patterns.- 6.2.4 Overhead.- 6.3 The Measurement of Performance Indices.- 6.3.1 Measurement of the Workload.- 6.3.2 Measurement of the Time.- 6.3.3 Profiling.- 6.3.4 Spotting Performance Decreasing Factors.- 6.4 Performance Optimization.- 6.5 Architecture Independent Optimizations.- 6.6 Loop Optimizations.- 6.6.1 Loop Unrolling.- 6.6.2 Unrolling Nested Loops.- 6.6.3 Loop Fusion.- 6.6.4 The Elimination of Loop Branches.- 6.6.5 Associative Transformations.- 6.6.6 Loop Interchanges.- 6.7 Blocked Memory Access.- 6.7.1 Hierarchical Blocking.- 6.8 Case Study: Multiplication of Matrices.- 6.8.1 Loop Interchanges.- 6.8.2 Loop Unrolling.- 6.8.3 Blocking.- 6.8.4 Block Copying.- 6.8.5 Blocking, Copying and Loop Unrolling.- 6.8.6 Optimizing System Software.- 7 Available Numerical Software.- 7.1 The Cost of Software.- 7.2 Sources of Numerical Software.- 7.2.1 Numerical Application Software.- 7.2.2 Printed Programs.- 7.2.3 Numerical Software Libraries.- 7.2.4 Numerical Software Packages.- 7.2.5 References to Software in this Book.- 7.3 Software and the Internet.- 7.3.1 The Internet.- 7.3.2 Communication in the Internet, E-Mail.- 7.3.3 Forums for Discussion on the Internet.- 7.3.4 Resource Sharing on the Internet.- 7.3.5 Finding Software in the Internet.- 7.3.6 Internet Front Ends.- 7.3.7 NETLIB.- 7.3.8 eLib.- 7.3.9 GAMS.- 7.4 Interactive Multifunctional Systems.- 7.4.1 Exploratory Systems.- 7.4.2 Numerical Systems.- 7.4.3 Symbolic Systems.- 7.4.4 Simulation Systems.- 7.5 Problem Solving Environments.- 7.5.1 Available Problem Solving Environments.- 7.6 Case Study: Software for Elliptic PDEs.- 7.6.1 Problem Classification.- 7.6.2 Software Packages for Elliptic Problems.- 7.6.3 Numerical Program Library Sections.- 7.6.4 TOMS Programs.- 8 Using Approximation in Mathematical Model Building.- 8.1 Analytic Models.- 8.1.1 Elementary Functions as Models.- 8.1.2 Algorithms Used as Mathematical Models.- 8.2 Information and Data.- 8.2.1 Obtaining Algebraic Data from Discrete Information.- 8.2.2 Obtaining Analytic Data from Continuous Information.- 8.2.3 The Discretization of Continuous Information.- 8.2.4 The Homogenization of Discrete Data.- 8.3 Discrete Approximation.- 8.3.1 Discrete Approximation Data.- 8.3.2 Interpolation.- 8.3.3 Case Study: Water Resistance of Vessels.- 8.4 Function Approximation.- 8.4.1 Nonadaptive Discretization.- 8.4.2 Adaptive Discretization.- 8.4.3 Homogenization Algorithms.- 8.4.4 Additional Information.- 8.5 Choosing a Model Function.- 8.5.1 Uniform or Piecewise Approximation.- 8.5.2 Linear Approximation.- 8.5.3 Nonlinear Approximation.- 8.5.4 Global or Local Approximation.- 8.5.5 Continuity and Differentiability.- 8.5.6 Condition.- 8.5.7 Invariance under Scaling.- 8.5.8 Constraints.- 8.5.9 Appearance.- 8.6 Choice of the Distance Function.- 8.6.1 Mathematical Foundations.- 8.6.2 Norms for Finite-Dimensional Spaces.- 8.6.3 Norms for Infinite-Dimensional Spaces.- 8.6.4 Weighted Norms.- 8.6.5 Hamming Distance.- 8.6.6 Robust Distance Functions.- 8.6.7 Orthogonal Approximation.- 8.7 Transformation of the Problem.- 8.7.1 Ordinate Transformation.- 8.7.2 Curves.- 9 Interpolation.- 9.1 Interpolation Problems.- 9.1.1 Choosing a Class of Functions.- 9.1.2 Determination of the Parameters of an Interpolation Function.- 9.1.3 Manipulation of the Interpolation Function.- 9.2 Mathematical Foundations.- 9.2.1 The General Interpolation Problem.- 9.2.2 Interpolation of Function Values.- 9.3 Univariate Polynomial Interpolation.- 9.3.1 Univariate Polynomials.- 9.3.2 Representation Forms of Univariate Polynomials.- 9.3.3 The Calculation of Coefficients.- 9.3.4 The Evaluation of Polynomials.- 9.3.5 Error and Convergence Behavior.- 9.3.6 Algorithm Error in Polynomial Interpolation.- 9.3.7 The Convergence of Interpolation Polynomials.- 9.3.8 The Conditioning of Polynomial Interpolation.- 9.3.9 Choosing Interpolation Nodes.- 9.3.10 Hermite Interpolation.- 9.4 Univariate, Piecewise, Polynomial Interpolation.- 9.4.1 The Accuracy of the Approximation.- 9.4.2 Evaluation.- 9.5 Polynomial Splines.- 9.5.1 Oscillations and Sensitivity to Perturbations.- 9.5.2 The Representation of Polynomial Splines.- 9.6 B-Splines.- 9.6.1 Choice of the B-Spline Break Points.- 9.6.2 B-Splines in Graphical Data Processing.- 9.6.3 Software for B-Splines.- 9.7 Cubic Spline Interpolation.- 9.7.1 Boundary Conditions.- 9.7.2 Extremal Property.- 9.7.3 Error and Convergence Behavior.- 9.7.4 The Calculation of Coefficients.- 9.7.5 The Evaluation of Spline Functions.- 9.7.6 Condition.- 9.8 Splines Without Undesirable Oscillations.- 9.8.1 Exponential Splines.- 9.8.2 v-Splines.- 9.8.3 The Akima Subspline Interpolation.- 9.9 Multivariate Interpolation.- 9.9.1 Tensor Product Interpolation.- 9.9.2 Triangulation.- 9.10 Multivariate Polynomial Interpolation.- 9.11 Multivariate (Sub-) Spline Interpolation.- 9.11.1 Tensor Product Spline Functions.- 9.11.2 Polynomial Interpolation on Triangles.- 9.12 Related Problems and Methods.- Glossary of Notation.- Author Index.

Reviews

The two volumes can be highly recommended for newcomers in the area as well as for people working for a long time in or with computer numerics. - EUROSIM - Simulation News Europe ...This book is highly recommended to students, scientists, and engineers interested in the numerical solution of mathematical problems. It is very useful as a handbook for both newcomers and experts. Every science/engineering\-/mathematics/computer science library should have a copy of this book. --MATHEMATICAL REVIEWS


The two volumes can be highly recommended for newcomers in the area as well as for people working for a long time in or with computer numerics. - EUROSIM - Simulation News Europe ...This book is highly recommended to students, scientists, and engineers interested in the numerical solution of mathematical problems. It is very useful as a handbook for both newcomers and experts. Every science/engineering\-/mathematics/computer science library should have a copy of this book. --MATHEMATICAL REVIEWS


The two volumes can be highly recommended for newcomers in the area as well as for people working for a long time in or with computer numerics. - EUROSIM - Simulation News Europe<p>... This book is highly recommended to students, scientists, and engineers interested in the numerical solution of mathematical problems. It is very useful as a handbook for both newcomers and experts. Every science/engineering\-/mathematics/computer science library should have a copy of this book. --MATHEMATICAL REVIEWS


Author Information

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List