|
![]() |
|||
|
||||
OverviewIn this book a systematic discussion of crack problems in elastic-plastic materials is presented. The state of the art in fracture mechanics research and assessment of cracks is documented, with the help of analytic, asymptotic methods as well as finite element computations. After a brief introduction to fracture mechanics, the two-parameter concept for stationary cracks is studied in addition to the issues in three-dimensional crack fields under coupling with strong out-of-plane effects. Cracks along interfaces and crack growth problems under mixed mode conditions are also treated. A systematic study of stress singularities for different notches is accompanied by detailed finite element computations. Full Product DetailsAuthor: Huang YuanPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 2002 ed. Volume: 4 Dimensions: Width: 15.50cm , Height: 1.90cm , Length: 23.20cm Weight: 1.390kg ISBN: 9783540433361ISBN 10: 3540433368 Pages: 311 Publication Date: 26 April 2002 Audience: Professional and scholarly , College/higher education , Professional & Vocational , Postgraduate, Research & Scholarly Format: Hardback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents1. Introduction.- 2. Cracks under stationary conditions.- 2.1 Higher-order solutions for pressure-sensitive materials.- 2.2 Two-parameter characterizations for engineering materials.- 2.3 Effects of biaxial loads to plane stress cracks.- 2.4 Three-dimensional crack front fields.- 2.5 Remarks.- 3. Cracks under thermal-mechanical loading conditions.- 3.1 Characterization of cracks under high temperature gradients.- 3.2 Scaling of temperature-induced material inhomogeity.- 3.3 Effects of transient thermal loading.- 3.4 Remarks.- 4. Interface cracks.- 4.1 Stationary interface crack tip fields.- 4.2 Quasi-static crack growth.- 4.3 Dynamic interface crack growth.- 4.4 Remarks.- 5. Mixed mode crack propagation.- 5.1 Static crack growth under combined mode I and III conditions.- 5.2 Dynamic crack growth under combined mode I and III conditions.- 5.3 Remarks.- 6. Assessment of apex-V notches.- 6.1 Higher-order solutions for power-law hardening materials.- 6.2 Notches in pressure-sensitive materials.- 6.3 Remarks.- References.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |