Novel Nanocomposite Coatings: Advances and Industrial Applications

Author:   Rostislav Daniel (University of Leoben, Austria) ,  Jindřich Musil (University of West Bohemia, Plzen, Czech Republic)
Publisher:   Pan Stanford Publishing Pte Ltd
ISBN:  

9789814411172


Pages:   344
Publication Date:   16 December 2014
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $297.56 Quantity:  
Add to Cart

Share |

Novel Nanocomposite Coatings: Advances and Industrial Applications


Add your own review!

Overview

Nanocomposite materials as a special class of nanostructured materials have recently attracted great interest due to their extraordinary mechanical properties as well as thermal stability and oxidation resistance. The unique structure and exceptional properties make nanocomposite materials a possible alternative to traditional polycrystalline materials, which have met their limits in many recent engineering applications. In particular, nanocomposite coatings synthesized by plasma-assisted deposition processes under highly non-equilibrium conditions provide a high potential for new applications as protective and functional coatings in automotive, aerospace, tooling, electronic, or manufacturing industry. This book provides a comprehensive overview of the synthesis of Si-containing hard nanocomposite coatings based on transition metal nitrides by plasma-based thin film processing. It demonstrates the full versatility of these nanocomposites for low Si-containing coatings tailored with superior mechanical properties and novel high Si-containing nanocomposite coatings with extraordinary thermal stability and resistance against oxidation optimized for high-temperature applications. It pays special attention to understanding growth mechanisms of these structures under specific deposition conditions, structure–property relations, and stability of individual constituents to enhance their functionality for various applications.

Full Product Details

Author:   Rostislav Daniel (University of Leoben, Austria) ,  Jindřich Musil (University of West Bohemia, Plzen, Czech Republic)
Publisher:   Pan Stanford Publishing Pte Ltd
Imprint:   Pan Stanford Publishing Pte Ltd
Dimensions:   Width: 15.20cm , Height: 2.50cm , Length: 22.90cm
Weight:   0.614kg
ISBN:  

9789814411172


ISBN 10:   9814411175
Pages:   344
Publication Date:   16 December 2014
Audience:   College/higher education ,  Professional and scholarly ,  Tertiary & Higher Education ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Synthesis of New Nanostructured Materials. Nanocrystalline Materials. Multilayers and Superlattices. Nanocomposite Films. Thin Film Processing. Principles of Plasma Discharges. Physical Sputtering and Transport of Sputtered Material. Sputter Deposition Techniques. Reactive Sputter Deposition. Film Formation and Structure. Condensation of Sputtered Material. Interface Formation. Nucleation and Growth. Microstructure of Thin Films, Structure Zone Models, Advantages and Limitations of Sputter Deposition Processes. Structure-Property Relation in Hard Films. Me-Si-N Films With a Low and Intermediate Si Content. Structure, Morphology and Phase Composition Hardness and Macrostress Oxidation Resistance Problems with Reproducibility. Novel nanocomposite films - Zr-Si-N Films with a High Si Content. Deposition Rate. Elemental Composition. Chemical Bonding and Phase Composition. Electrical and Optical Properties. Structure. Morphology. Surface Roughness. Mechanical Properties. Macrostress. Effect of Substrate Bias. Thermal Stability. Oxidation Resistance. High Si-containing W-Si-N Nanocomposite Films. Deposition Rate. Elemental Composition. Chemical Bonding and Phase Composition. Structure. Morphology. Surface Roughness. Mechanical Properties. Macrostress. Oxidation Resistance. Characterization of Thin Films. Mechanical Properties. X-Ray Diffraction Analysis. Stress Measurement. Film Thickness Measurement. Scanning Electron Microscopy. Energy Dispersive X-Ray Spectrometry. Differential Scanning Calorimetry. Thermogravimetric Analysis.

Reviews

Author Information

Rostislav Daniel is associate professor at the Department of Physical Metallurgy and Materials Testing, University of Leoben, Austria. He received his MSc in applied sciences and computer engineering, applied physics and physical engineering and PhD in applied sciences and computer engineering, plasma physics and physics of thin films at the University of West Bohemia. His main research areas are plasma physics and physics of thin films, synthesis of advanced hard nanocrystalline and nanocomposite thin films of optimized structures and physical properties, advanced structural characterization of solids, characterization of mechanical properties of thin films and bulk solids, measurements of residual stresses in thin films by optical and x-ray diffraction techniques, investigations of thermo-mechanical properties of thin films and bulk solids, study of thermal stability and oxidation resistance of thin films and bulk solids, and coating design and architecture. Jindřich Musil is professor of applied physics at the University of West Bohemia, Plzeň, Czech Republic. He received his MSc in electrical engineering at the Military Technical University, Brno, Czech Republic; PhD in physics and mathematics at Czechoslovak Academy of Sciences, Prague, Czech Republic; and DSc in physics and mathematics at Czechoslovak Academy of Sciences, Prague, Czech Republic. His main research areas are electromagnetic field, propagation of electromagnetic waves, microwave plasma discharges, plasma physics, thermonuclear fusion, lasers, plasma chemistry and physics of thin films, PVD and PACVD of thin films, high-rate pulsed reactive magnetron sputtering, and development of new technological processes and advanced systems for synthesis of novel hard and functional nanocomposite coatings.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List