Normalization Techniques in Deep Learning

Author:   Lei Huang
Publisher:   Springer International Publishing AG
Edition:   1st ed. 2022
ISBN:  

9783031145940


Pages:   110
Publication Date:   09 October 2022
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $129.35 Quantity:  
Add to Cart

Share |

Normalization Techniques in Deep Learning


Add your own review!

Overview

​This book presents and surveys normalization techniques with a deep analysis in training deep neural networks.  In addition, the author provides technical details in designing new normalization methods and network architectures tailored to specific tasks.  Normalization methods can improve the training stability, optimization efficiency, and generalization ability of deep neural networks (DNNs) and have become basic components in most state-of-the-art DNN architectures.  The author provides guidelines for elaborating, understanding, and applying normalization methods.  This book is ideal for readers working on the development of novel deep learning algorithms and/or their applications to solve practical problems in computer vision and machine learning tasks.  The book also serves as a resource researchers, engineers, and students who are new to the field and need to understand and train DNNs.

Full Product Details

Author:   Lei Huang
Publisher:   Springer International Publishing AG
Imprint:   Springer International Publishing AG
Edition:   1st ed. 2022
Weight:   0.398kg
ISBN:  

9783031145940


ISBN 10:   3031145941
Pages:   110
Publication Date:   09 October 2022
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Introduction.- Motivation and Overview of Normalization in DNNs.- A General View of Normalizing Activations.- A Framework for Normalizing Activations as Functions.- Multi-Mode and Combinational Normalization.- BN for More Robust Estimation.- Normalizing Weights.- Normalizing Gradients.- Analysis of Normalization.- Normalization in Task-specific Applications.- Summary and Discussion.

Reviews

Author Information

Lei Huang, Ph.D., is an Associate Professor at Beihang University. His current research interests include normalization techniques involving methods, theories, and applications in training deep neural networks (DNNs).  He also has wide interests in representation and optimization of deep learning theory and computer vision tasks.  Dr. Huang serves as a reviewer for top-tier conferences and journals in machine learning and computer vision.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List