|
![]() |
|||
|
||||
OverviewThe book is devoted to various constructions of sets which are nonmeasurable with respect to invariant (more generally, quasi-invariant) measures. Our starting point is the classical Vitali theorem stating the existence of subsets of the real line which are not measurable in the Lebesgue sense. This theorem stimulated the development of the following interesting topics in mathematics: 1. Paradoxical decompositions of sets in finite-dimensional Euclidean spaces; 2. The theory of non-real-valued-measurable cardinals; 3. The theory of invariant (quasi-invariant) extensions of invariant (quasi-invariant) measures. These topics are under consideration in the book. The role of nonmeasurable sets (functions) in point set theory and real analysis is underlined and various classes of such sets (functions) are investigated . Among them there are: Vitali sets, Bernstein sets, Sierpinski sets, nontrivial solutions of the Cauchy functional equation, absolutely nonmeasurable sets in uncountable groups, absolutely nonmeasurable additive functions, thick uniform subsets of the plane, small nonmeasurable sets, absolutely negligible sets, etc. The importance of properties of nonmeasurable sets for various aspects of the measure extension problem is shown. It is also demonstrated that there are close relationships between the existence of nonmeasurable sets and some deep questions of axiomatic set theory, infinite combinatorics, set-theoretical topology, general theory of commutative groups. Many open attractive problems are formulated concerning nonmeasurable sets and functions. Full Product DetailsAuthor: Alexander Kharazishvili (Georgian Technical University, Tbilisi, Georgia)Publisher: Elsevier Science & Technology Imprint: Elsevier Science Ltd Volume: v. 195 Dimensions: Width: 16.50cm , Height: 2.60cm , Length: 24.00cm Weight: 0.770kg ISBN: 9780444516268ISBN 10: 0444516263 Pages: 349 Publication Date: 29 May 2004 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Out of Print Availability: In Print ![]() Limited stock is available. It will be ordered for you and shipped pending supplier's limited stock. Table of ContentsReviewsThe author has done a very good job writing a useful book on a theme which had not previously been described so thoroughly in the literature. Marek Balcerak (Lodz, Poland) in: Mathematical Reviews (2005d: 28001) Author InformationProfessor of Mathematics, Georgian Technical University; Member of Georgian National Academy of Science, Tbilisi, Georgia Tab Content 6Author Website:Countries AvailableAll regions |