|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Moshe Marcus , Laurent Véron , M MarcusPublisher: De Gruyter Imprint: De Gruyter Volume: 21 Dimensions: Width: 17.00cm , Height: 2.00cm , Length: 24.00cm Weight: 0.580kg ISBN: 9783110305159ISBN 10: 3110305151 Pages: 261 Publication Date: 15 November 2013 Recommended Age: College Graduate Student Audience: Professional and scholarly , Professional & Vocational , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of Contents1 Linear second order elliptic equations with measure data 5 1.1 Linear boundary value problems with L1 data. . . . . . . . . . . . . 5 1.2 Measure data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 M-boundary trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.4 The Herglotz – Doob theorem . . . . . . . . . . . . . . . . . . . . . . 24 1.5 Sub-solutions, super-solutions and Kato’s inequality. . . . . . . . . . 26 1.6 Boundary Harnack principle. . . . . . . . . . . . . . . . . . . . . . . 36 1.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2 Nonlinear second order elliptic equations with measure data 43 2.1 Semilinear problems with L1 data . . . . . . . . . . . . . . . . . . . . 43 2.2 Semilinear problems with bounded measure data . . . . . . . . . . . 47 2.3 Subcritical non-linearities . . . . . . . . . . . . . . . . . . . . . . . . 55 2.3.1 Weak Lp spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.3.2 Continuity of G and P relative to Lp w norm . . . . . . . . . . 59 2.3.3 Continuity of a superposition operator. . . . . . . . . . . . . 61 2.3.4 Weak continuity of Sg . . . . . . . . . . . . . . . . . . . . . . . 65 2.3.5 Weak continuity of Sg @ . . . . . . . . . . . . . . . . . . . . . . 69 2.4 The structure of Mg. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.5 Remarks on unbounded domains . . . . . . . . . . . . . . . . . . . . 80 2.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3 The boundary trace and associated boundary value problems. 83 3.1 The boundary trace . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.1.1 Moderate solutions . . . . . . . . . . . . . . . . . . . . . . . . 83 3.1.2 Positive solutions . . . . . . . . . . . . . . . . . . . . . . . . . 883.1.3 Unbounded domains . . . . . . . . . . . . . . . . . . . . . . . 98 3.2 Maximal solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.3 The boundary value problem with rough trace. . . . . . . . . . . . . 101 3.4 A problem with fading absorption. . . . . . . . . . . . . . . . . . . . 108 3.4.1 The similarity transformation and an extension of the Keller – Osserman estimate. . . . . . . . . . . . . . . . . . . . . . . 109 3.4.2 Barriers and maximal solutions. . . . . . . . . . . . . . . . . . 111 3.4.3 The critical exponent. . . . . . . . . . . . . . . . . . . . . . . 116 3.4.4 The very singular solution. . . . . . . . . . . . . . . . . . . . 119 3.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 4 Isolated singularities 133 4.1 Universal upper bounds . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.1.1 The Keller-Osserman estimates . . . . . . . . . . . . . . . . . 133 4.1.2 Applications to model cases . . . . . . . . . . . . . . . . . . 138 4.2 Isolated singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 4.2.1 Removable singularities . . . . . . . . . . . . . . . . . . . . . 140 4.2.2 Isolated positive singularities . . . . . . . . . . . . . . . . . . 142 4.2.3 Isolated signed singularities . . . . . . . . . . . . . . . . . . . 151 4.3 Boundary singularities . . . . . . . . . . . . . . . . . . . . . . . . . . 158 4.3.1 Upper bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 4.3.2 The half space case . . . . . . . . . . . . . . . . . . . . . . . . 160 4.3.3 The case of a general domain . . . . . . . . . . . . . . . . . . 167 4.4 Boundary singularities with fading absorption . . . . . . . . . . . . . 176 4.4.1 Power-type degeneracy . . . . . . . . . . . . . . . . . . . . . . 176 4.4.2 A strongly fading absorption . . . . . . . . . . . . . . . . . . 180 4.5 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 4.5.1 General results of isotropy . . . . . . . . . . . . . . . . . . . . 187 4.5.2 Isolated singularities of super-solutions . . . . . . . . . . . . 188 4.6 Notes and comments . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 5 Classical theory of maximal and large solutions 195 5.1 Maximal solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 5.1.1 Global conditions . . . . . . . . . . . . . . . . . . . . . . . . . 195 5.1.2 Local conditions . . . . . . . . . . . . . . . . . . . . . . . . . 200 5.2 Large solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 5.2.1 General nonlinearities . . . . . . . . . . . . . . . . . . . . . . 2015.2.2 The power and exponential cases . . . . . . . . . . . . . . . . 206 5.3 Uniqueness of large solutions . . . . . . . . . . . . . . . . . . . . . . 210 5.3.1 General uniqueness results . . . . . . . . . . . . . . . . . . . . 211 5.3.2 Applications to power and exponential types nonlinearities . 219 5.4 Equations with forcing term . . . . . . . . . . . . . . . . . . . . . . . 221 5.4.1 Maximal and minimal large solutions . . . . . . . . . . . . . . 222 5.4.2 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 5.5 Notes and comments . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 6 Further results on singularities and large solutions 233 6.1 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 6.1.1 Internal singularities . . . . . . . . . . . . . . . . . . . . . . . 233 6.1.2 Boundary singularities . . . . . . . . . . . . . . . . . . . . . . 244 6.2 Symmetries of large solutions . . . . . . . . . . . . . . . . . . . . . . 259 6.3 Sharp blow-up rate of large solutions . . . . . . . . . . . . . . . . . . 268 6.3.1 Estimates in an annulus . . . . . . . . . . . . . . . . . . . . . 269 6.3.2 Curvature secondary effects . . . . . . . . . . . . . . . . . . . 275 6.4 Notes and comments . . . . . . . . . . . . . . . . . . . . . . . . . . . 279ReviewsThe book is self-contained and it is highly recommended to researchers and graduate students with a background in Real Analysis and Partial Differential Equations. Zentralblatt f r Mathematik The book is self-contained and it is highly recommended to researchers and graduate students with a background in Real Analysis and Partial Differential Equations. Zentralblatt fur Mathematik Author InformationMoshe Marcus, Technion, Haifa, Israel; Laurent Véron, Université François Rabelais, Tours, France. Tab Content 6Author Website:Countries AvailableAll regions |