|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: P.S LandaPublisher: Springer Imprint: Springer Edition: Softcover reprint of hardcover 1st ed. 1996 Volume: 360 Dimensions: Width: 15.50cm , Height: 2.90cm , Length: 23.50cm Weight: 0.854kg ISBN: 9789048146703ISBN 10: 9048146704 Pages: 544 Publication Date: 07 December 2010 Audience: College/higher education , Professional and scholarly , Undergraduate , Postgraduate, Research & Scholarly Format: Paperback Publisher's Status: Active Availability: Out of stock ![]() The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Table of Contents1 Dynamical systems. Phase space. Stochastic and chaotic systems. The number of degrees of freedom.- 2 Hamiltonian systems close to integrable. Appearance of stochastic motions in Hamiltonian systems.- 3 Attractors and repellers. Reconstruction of attractors from an experimental time series. Quantitative characteristics of attractors.- 4 Natural and forced oscillations and waves. Self-oscillations and auto-waves.- 5 Conservative systems.- 6 Non-conservative Hamiltonian systems and dissipative systems.- 7 Natural oscillations of non-linear oscillators.- 8 Natural oscillations in systems of coupled oscillators.- 9 Natural waves in bounded and unbounded continuous media. Solitons.- 10 Oscillations of a non-linear oscillator excited by an external force.- 11 Oscillations of coupled non-linear oscillators excited by an external periodic force.- 12 Parametric oscillations.- 13 Waves in semibounded media excited by perturbations applied to their boundaries.- 14 Forced oscillations and waves in active non-self-oscillatory systems. Turbulence. Burst instability. Excitation of waves with negative energy.- 15 Mechanisms of excitation and amplitude limitation of self-oscillations and auto-waves. Classification of self-oscillatory systems.- 16 Examples of self-oscillatory systems with lumped parameters. I.- 17 Examples of self-oscillatory systems with lumped parameters. II.- 18 Examples of self-oscillatory systems with high frequency power sources.- 19 Examples of self-oscillatory systems with time delay.- 20 Examples of continuous self-oscillatory systems with lumped active elements.- 21 Examples of self-oscillatory systems with distributed active elements.- 22 Periodic actions on self-oscillatory systems. Synchronization and chaotization of self-oscillations.- 23 Interaction between self-oscillatory systems.- 24 Examples of auto-waves and dissipative structures.- 25 Convective structures and self-oscillations in fluid. The onset of turbulence.- 26 Hydrodynamic and acoustic waves in subsonic jet and separated flows.- Appendix A Approximate methods for solving linear differential equations with slowly varying parameters.- A.1 JWKB Method.- A.2 Asymptotic method.- A.3 The Liouville—Green transformation.- A.4 The Langer transformation.- Appendix B The Whitham method and the stability of periodic running waves for the Klein—Gordon equation.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |