|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: David GauldPublisher: Springer Verlag, Singapore Imprint: Springer Verlag, Singapore Edition: 2014 ed. Dimensions: Width: 15.50cm , Height: 1.40cm , Length: 23.50cm Weight: 4.557kg ISBN: 9789812872562ISBN 10: 9812872566 Pages: 203 Publication Date: 16 December 2014 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsTopological Manifolds.- Edge of the World: When are Manifolds Metrisable?.- Geometric Tools.- Type I Manifolds and the Bagpipe Theorem.- Homeomorphisms and Dynamics on Non-Metrisable Manifolds.- Are Perfectly Normal Manifolds Metrisable?.- Smooth Manifolds.- Foliations on Non-Metrisable Manifolds.- Non-Hausdorff Manifolds and Foliations.ReviewsFirst of its kind, this volume by Gauld (Univ. of Auckland, New Zealand) both synthesizes and improves upon the journal literature, demonstrating clearly that non-metrizable manifolds admit profitable study from a variety of vantages (e.g., set theory, differential topology) and exhibit rich and surprising behaviors, using theory built on, but hardly reducible to, the metrizable case. ... Summing Up: Highly recommended. Upper-division undergraduates through professionals/practitioners. (D. V. Feldman, Choice, Vol. 53 (2), October, 2015) The book is well-organized with two appendices: the first one collects all necessary topological results, and the second one provides preliminaries on set theory. In addition, each chapter has its own abstract and references. ... this book is so-far the only monograph in the literature which gives a comprehensive treatment on non-metrizable manifolds. It is recommended to those readers who have general knowledge on manifolds as topological objects and are curious about what happens beyond the wall of metrizability. (Jiling Cao, zbMATH 1336.57031, 2016) First of its kind, this volume by Gauld (Univ. of Auckland, New Zealand) both synthesizes and improves upon the journal literature, demonstrating clearly that non-metrizable manifolds admit profitable study from a variety of vantages (e.g., set theory, differential topology) and exhibit rich and surprising behaviors, using theory built on, but hardly reducible to, the metrizable case. ... Summing Up: Highly recommended. Upper-division undergraduates through professionals/practitioners. (D. V. Feldman, Choice, Vol. 53 (2), October, 2015) The book is well-organized with two appendices: the first one collects all necessary topological results, and the second one provides preliminaries on set theory. In addition, each chapter has its own abstract and references. ... this book is so-far the only monograph in the literature which gives a comprehensive treatment on non-metrizable manifolds. It is recommended to those readers who have general knowledge on manifolds as topological objects and are curious about what happens beyond the wall of metrizability. (Jiling Cao, zbMATH 1336.57031, 2016) First of its kind, this volume by Gauld (Univ. of Auckland, New Zealand) both synthesizes and improves upon the journal literature, demonstrating clearly that non-metrizable manifolds admit profitable study from a variety of vantages (e.g., set theory, differential topology) and exhibit rich and surprising behaviors, using theory built on, but hardly reducible to, the metrizable case. ... Summing Up: Highly recommended. Upper-division undergraduates through professionals/practitioners. (D. V. Feldman, Choice, Vol. 53 (2), October, 2015) Author InformationTab Content 6Author Website:Countries AvailableAll regions |