|
![]() |
|||
|
||||
OverviewThe importance of thermodynamics, particularly its Second Principle, to all branches of science in which systems with very large numbers of particles are involved cannot be overstated. This book offers a panoramic view of non-equilibrium thermodynamics. Perhaps the two most attractive aspects of thermodynamic equilibrium are its stability and its independence from the specifics of the particular system involved. Does an equivalent exist for non-equilibrium thermodynamics? Many researchers have tried to describe such stability in the same way that the Second Principle describes the stability of thermodynamic equilibrium - and failed. Most of them invoked either entropy, or its production rate, or some modified version of it. In their efforts, however, those researchers have found a lot of useful stability criteria for far-from-equilibrium states. These criteria usually take the form of variational principles, in terms of the minimization or maximization of some quantity. The aimof this book is to discuss these variational principles by highlighting the role of macroscopic quantities. This book is aimed at a wider audience than those most often exposed to the criteria described, i.e., undergraduates in STEM, as well as the usual interested and invested professionals. Full Product DetailsAuthor: Andrea Di VitaPublisher: Springer International Publishing AG Imprint: Springer International Publishing AG Edition: 1st ed. 2022 Volume: 1007 Weight: 0.379kg ISBN: 9783031122200ISBN 10: 3031122208 Pages: 221 Publication Date: 14 September 2022 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsLooking for the Holy Grail?.- Thermodynamic equilibrium.- Local thermodynamic equilibrium.- Linear non-equilibrium thermodynamics.- Beyond linear non-equilibrium thermodynamics.ReviewsAuthor InformationAndrea Di Vita was trained as a plasma physicist, and has been engaged in nuclear fusion research. His work mainly concerns the stability of gas turbine burners against spontaneous, dangerous thermo-acoustic instabilities (AKA 'humming'), which transform combustion energy into mechanical energy and may destroy low-pollution, high-power burners. His primary fields of interest are non-equilibrium thermodynamics and non-linear analysis. He is a Visiting Scientist at the Università degli Studi di Genova, Dipartimento di Ingegneria civile, chimica e ambientale (DICCA). Tab Content 6Author Website:Countries AvailableAll regions |