|
|
|||
|
||||
OverviewIn this work the authors deal with linear second order partial differential operators of the following type $H=\partial_{t}-L=\partial_{t}-\sum_{i,j=1}^{q}a_{ij}(t,x) X_{i}X_{j}-\sum_{k=1}^{q}a_{k}(t,x)X_{k}-a_{0}(t,x)$ where $X_{1},X_{2},\ldots,X_{q}$ is a system of real Hormander's vector fields in some bounded domain $\Omega\subseteq\mathbb{R}^{n}$, $A=\left\{ a_{ij}\left( t,x\right) \right\} _{i,j=1}^{q}$ is a real symmetric uniformly positive definite matrix such that $\lambda^{-1}\vert\xi\vert^{2}\leq\sum_{i,j=1}^{q}a_{ij}(t,x) \xi_{i}\xi_{j}\leq\lambda\vert\xi\vert^{2}\text{}\forall\xi\in\mathbb{R}^{q}, x \in\Omega,t\in(T_{1},T_{2})$ for a suitable constant $\lambda>0$ a for some real numbers $T_{1} < T_{2}$. Table of Contents: Introduction. Part I: Operators with constant coefficients: Overview of Part I; Global extension of Hormander's vector fields and geometric properties of the CC-distance; Global extension of the operator $H_{A}$ and existence of a fundamental solution; Uniform Gevray estimates and upper bounds of fundamental solutions for large $d\left(x,y\right)$; Fractional integrals and uniform $L^{2}$ bounds of fundamental solutions for large $d\left(x,y\right)$; Uniform global upper bounds for fundamental solutions; Uniform lower bounds for fundamental solutions; Uniform upper bounds for the derivatives of the fundamental solutions; Uniform upper bounds on the difference of the fundamental solutions of two operators. Part II: Fundamental solution for operators with Holder continuous coefficients: Assumptions, main results and overview of Part II; Fundamental solution for $H$: the Levi method; The Cauchy problem; Lower bounds for fundamental solutions; Regularity results. Part III: Harnack inequality for operators with Holder continuous coefficients: Overview of Part III; Green function for operators with smooth coefficients on regular domains; Harnack inequality for operators with smooth coefficients; Harnack inequality in the non-smooth case; Epilogue; References. (MEMO/204/961) Full Product DetailsAuthor: Marco Bramanti , Luca Brandolini , Ermanno Lanconelli , Francesco UguzzoniPublisher: American Mathematical Society Imprint: American Mathematical Society Edition: New ed. Volume: v. 204, No. 961 Weight: 0.212kg ISBN: 9780821849033ISBN 10: 0821849034 Pages: 123 Publication Date: 04 October 2010 Audience: Professional and scholarly , Professional and scholarly , Professional & Vocational , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Awaiting stock The supplier is currently out of stock of this item. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out for you. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |
||||