|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: J. Carmona , M. VergnePublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 1981 ed. Volume: 880 Dimensions: Width: 15.50cm , Height: 2.90cm , Length: 23.50cm Weight: 0.838kg ISBN: 9783540108726ISBN 10: 3540108726 Pages: 554 Publication Date: 01 October 1981 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Out of stock ![]() The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Language: Engish & French Table of ContentsEquations de Hua et noyau de Poisson.- Homologie des groupes de Lie et dualite de Poincare.- Sur les representations des algebres de lie semi-simples construites par T. Enright.- Harish-chandra homomorphisms and minimal K-types of real semisimple lie groups.- A proof of a conjecture of Kashiware and Vergne.- K-finite joint eigenfunctions of U(g)K on a non-riemannian semisimple symmetric space G/H.- Operateurs d'entrelacement & calcul d'obstruction sur des groupes de Lie resolubles.- Immeubles des groupes lineaires generaux.- Sur les froupes EXTn des representations des groupes de Lie resolubles.- Fourier inversion and the plancherel theorem.- Automorphic forms of low rank.- Kostant's problem and goldie rank.- Character polynomials of discrete series representations.- Some new intertwining operators for semisimple groups.- Extension des representations de groupes unipotents p-adiques Calculs d'obstructions.- Fourier analysis on semisimple symmetric spaces.- Representations de Schroedinger Indice de Maslov et groupe metaplectique.- Decomposition de la serie principale des groupes reductifs p-adiques.- Base change and a matching theorem for real groups.- Unitary representations of SL(n,?) and the cohomology of congruence subgroups.- Singular unitary representations.- Remarks on the unitary representations appearing in the Matsushima-Murakami formula.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |