|
![]() |
|||
|
||||
OverviewNature is inherently noisy and nonlinear. It is noisy in the sense that all macroscopic systems are subject to the fluctuations of their environments and also to internal fluctuations. It is nonlinear in the sense that the restoring force on a system displaced from equilibrium does not usually vary linearly with the size of the displacement. To calculate the properties of stochastic (noisy) nonlinear systems is in general extremely difficult, although considerable progress has been made in the past. The three volumes that make up Noise in Nonlinear Dynamical Systems comprise a collection of specially written authoritative reviews on all aspects of the subject, representative of all the major practitioners in the field. The second volume applies the theory of Volume 1 to the calculation of the influence of noise in a variety of contexts. These include quantum mechanics, condensed matter, noise induced transitions, escape processes and transition probabilities, systems with periodic potentials, discrete nonlinear systems, symmetry-breaking transition, and optics. Full Product DetailsAuthor: Frank Moss , P. V. E. McClintockPublisher: Cambridge University Press Imprint: Cambridge University Press (Virtual Publishing) ISBN: 9780511897825ISBN 10: 0511897820 Publication Date: 05 January 2012 Audience: Professional and scholarly , Professional & Vocational Format: Undefined Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsList of contributors; Preface; Introduction to volume two; 1. Stochastic processes in quantum mechanical settings Ronald F. Fox; 2. Self-diffusion in non-Markovian condensed-matter systems Toyonori Munakata; 3. Escape from the underdamped potential well M. Buttiker; 4. Effect of noise on discrete dynamical systems with multiple attractors Edgar Knobloch and Jeffrey B. Weiss; 5. Discrete dynamics perturbed by weak noise Peter Talkner and Peter Hanggi; 6. Bifurcation behaviour under modulated control parameters M. Lucke; 7. Period doubling bifurcations: what good are they? Kurt Wiesenfeld; 8. Noise-induced transitions Werner Horsthemke and Rene Lefever; 9. Mechanisms for noise-induced transitions in chemical systems Raymond Kapral and Edward Celarier; 10. State selection dynamics in symmetry-breaking transitions Dilip K. Kondepudi; 11. Noise in a ring-laser gyroscope K. Vogel, H. Risken and W. Schleich; 12. Control of noise and applications to optical systems L. A. Lugiato, G. Broggi, M. Merri and M. A. Pernigo; 13. Transition probabilities and spectral density of fluctuations of noise driven bistable systems M. I. Dykman, M. A. Krivoglaz and S. M. Soskin; Index.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |