|
![]() |
|||
|
||||
OverviewThis book systematically investigates the nitrogen removal characteristics of two screened aerobic denitrifying bacteria and their applications in nitrogen oxides emissions reduction. It reveals that Pseudomonas stutzeri PCN-1 possesses excellent capacity for aerobic nitrogen removal, regardless of whether nitrate, nitrite or N2O were taken as denitrification substrates. It also demonstrates that the rapid N2O reduction is due to the coordinate expression of denitrification genes. Further, the book discusses the bioaugmentation experiments conducted in denitrifying SBR and a pilot-scale Carrousel oxidation ditch, which confirmed that the strain could significantly enhance denitrification performance, reduce N2O emission and improve system stability. The second strain, P.aeruginosa PCN-2 accumulated negligible NO during aerobic nitrate and nitrite removal and efficiently removed NO from flue gas. This study is of great significance for potentialapplications of aerobic denitrification in mitigating nitrogen oxides emissions from biological nitrogen removal systems. Full Product DetailsAuthor: Maosheng ZhengPublisher: Springer Verlag, Singapore Imprint: Springer Verlag, Singapore Edition: 1st ed. 2019 Weight: 0.454kg ISBN: 9789811324314ISBN 10: 981132431 Pages: 130 Publication Date: 14 November 2018 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsIntroduction.- Screening and identification of two efficient aerobic denitrifying bacterial strains.- Nitrogen removal characteristics and mechanism research of Pseudomonas stutzeri PCN-1.- Application of Pseudomonas stutzeri PCN-1 in nitrogen oxides emission mitigation.- Nitrogen removal characteristics and application of Pseudomonas aeruginosa PCN-2.- Conclusion and prospects.ReviewsAuthor InformationResearch Area: Biological nitrogen removal technologies; Environmental microbiology.Honors: Beijing Outstanding Graduate (2015); Peking University Outstanding Graduate (2015); Peking University Excellent Doctoral Dissertation (2015); Peking University Academic Innovation Award (2015); Peking University Professional Scholarship (2015); Institute of Environmental Engineering Academic Paper Award (2015); Gold Medal in 41th Geneva International Exhibition of Inventions (2013). Publications:(1) Zheng M., He D., Ma T., et al., 2014. Reducing NO and N2O emission during aerobic denitrification by newly isolated Pseudomonas stutzeri PCN-1. Bioresource Technology 162, 80-88.(2) Zheng M., Tian Y., Liu T., et al., 2015. Minimization of nitrous oxide emission in a pilot-scale oxidation ditch: generation, spatial variation and microbial interpretation. Bioresource Technology 179, 510-517.(3) Zheng M.S., Ma L.K., Li T.H., et al., 2015. Rapid Assessment Method for Eco-water Deficit in Catchments. Journal of Environmental Informatics. (In Press)(4) Zheng M., Li C., Liu S., et al., 2016. Potential application of aerobic denitrifying bacterium Pseudomonas aeruginosa PCN-2 in nitrogen oxides (NOx) removal from flue gas. Journal of Hazardous Materials. (Under Review)(5) Zhu S.1, Zheng M.1, Li C., et a., 2015. Special role of corn flour as an ideal carbon source for aerobic denitrification with minimized nitrous oxide emission. Bioresource Technology 186, 44-51.(6) He D., Zheng M., Ma T., et al., 2015. Interaction of aerobic Cr (VI) reduction and denitrification by strain Pseudomonas aeruginosa PCN-2. Bioresource Technology 185, 346-352.(7) He D., Zheng M., Ma T., et al., 2015. Nitrite interference and elimination in diphenylcarbazide (DPCI) spectrophotometric determination of hexavalentchromium. Water Science and Technology 203, 223-229.(8) Liu T., Liu S. Zheng M., et al., 2016. Performance assessment of full-Scale wastewater treatment plants based on seasonal variability of microbial communities via high-throughput sequencing. Plos One 11, e0152998. Tab Content 6Author Website:Countries AvailableAll regions |