|
![]() |
|||
|
||||
OverviewThis monograph presents smooth, unified, and generalized fractional programming problems, particularly advanced duality models for discrete min-max fractional programming. In the current, interdisciplinary, computer-oriented research environment, these programs are among the most rapidly expanding research areas in terms of their multi-faceted applications including problems ranging from robotics to money market portfolio management. The other more significant aspect of this monograph is in its consideration of minimax fractional integral type problems using higher order sonvexity and sounivexity notions. This is significant for the development of different types of duality models in terms of weak, strong, and strictly converse duality theorems, which can be handled by transforming them into generalized fractional programming problems. Fractional integral type programming is one of the fastest expanding areas of optimization, which feature several types of real-world problems. It can be applied to different branches of engineering (including multi-time multi-objective mechanical engineering problems) as well as to economics, to minimize a ratio of functions between given periods of time. Furthermore, it can be utilized as a resource in order to measure the efficiency or productivity of a system. In these types of problems, the objective function is given as a ratio of functions. For example, we consider a problem that deals with minimizing a maximum of several time-dependent ratios involving integral expressions. Full Product DetailsAuthor: Ram U. VermaPublisher: Nova Science Publishers Inc Imprint: Nova Science Publishers Inc Weight: 0.658kg ISBN: 9781536153712ISBN 10: 1536153710 Pages: 276 Publication Date: 01 June 2019 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsAuthor InformationInternational Publications USA, Mathematical Sciences Division, Denton, TX, US Tab Content 6Author Website:Countries AvailableAll regions |