|
![]() |
|||
|
||||
OverviewIn inverse problems, the aim is to obtain, via a mathematical model, information on quantities that are not directly observable but rather depend on other observable quantities. Inverse problems are encountered in such diverse areas of application as medical imaging, remote sensing, material testing, geosciences and financing. It has become evident that new ideas coming from differential geometry and modern analysis are needed to tackle even some of the most classical inverse problems. This book contains a collection of presentations, written by leading specialists, aiming to give the reader up-to-date tools for understanding the current developments in the field. Full Product DetailsAuthor: Kenrick Bingham , Yaroslav V. Kurylev , E. SomersaloPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: Softcover reprint of hardcover 1st ed. 2004 Dimensions: Width: 15.50cm , Height: 2.00cm , Length: 23.50cm Weight: 0.611kg ISBN: 9783642073793ISBN 10: 3642073794 Pages: 381 Publication Date: 30 November 2010 Audience: Professional and scholarly , Professional and scholarly , College/higher education , Professional & Vocational , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsI. EMS Summer School: New Analytic and Geometric Methods in Inverse Problems.- Metric Geometry.- Intertwining Operators in Inverse Scattering.- Carleman Type Estimates and Their Applications.- Gaussian Beams and Inverse Boundary Spectral Problems.- Analytic Methods for Inverse Scattering Theory.- Ray Transform on Riemannian Manifolds.- On the Local Dirichlet-to-Neumann Map.- II. EMS Conference: Recent Developments in the Wave Field and Diffuse Tomographic Inverse Problems.- Remarks on the Inverse Scattering Problem for Acoustic Waves.- Asymptotic Properties of Solutions to 3-particle Schrödinger Equations.- Stability and Reconstruction in Gel’fand Inverse Boundary Spectral Problem.- Uniqueness in Inverse Obstacle Scattering.- Geometric Methods for Anisotopic Inverse Boundary Value Problems.- Applications of the Oscillating-Decaying Solutions to Inverse Problems.- Time-Dependent Methods in Inverse Scattering Theory.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |