Neural-Symbolic Learning Systems: Foundations and Applications

Author:   Artur S. d'Avila Garcez ,  Krysia B. Broda ,  Dov M. Gabbay
Publisher:   Springer London Ltd
Edition:   2002 ed.
ISBN:  

9781852335120


Pages:   271
Publication Date:   06 August 2002
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $366.96 Quantity:  
Add to Cart

Share |

Neural-Symbolic Learning Systems: Foundations and Applications


Add your own review!

Overview

Full Product Details

Author:   Artur S. d'Avila Garcez ,  Krysia B. Broda ,  Dov M. Gabbay
Publisher:   Springer London Ltd
Imprint:   Springer London Ltd
Edition:   2002 ed.
Dimensions:   Width: 15.50cm , Height: 1.50cm , Length: 23.50cm
Weight:   0.910kg
ISBN:  

9781852335120


ISBN 10:   1852335122
Pages:   271
Publication Date:   06 August 2002
Audience:   College/higher education ,  Professional and scholarly ,  General/trade ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1. Introduction and Overview.- 1.1 Why Integrate Neurons and Symbols?.- 1.2 Strategies of Neural-Symbolic Integration.- 1.3 Neural-Symbolic Learning Systems.- 1.4 A Simple Example.- 1.5 How to Read this Book.- 1.6 Summary.- 2. Background.- 2.1 General Preliminaries.- 2.2 Inductive Learning.- 2.3 Neural Networks.- 2.3.1 Architectures.- 2.3.2 Learning Strategy.- 2.3.3 Recurrent Networks.- 2.4 Logic Programming.- 2.4.1 What is Logic Programming?.- 2.4.2 Fixpoints and Definite Programs.- 2.5 Nonmonotonic Reasoning.- 2.5.1 Stable Models and Acceptable Programs.- 2.6 Belief Revision.- 2.6.1 Truth Maintenance Systems.- 2.6.2 Compromise Revision.- I. Knowledge Refinement in Neural Networks.- 3. Theory Refinement in Neural Networks.- 3.1 Inserting Background Knowledge.- 3.2 Massively Parallel Deduction.- 3.3 Performing Inductive Learning.- 3.4 Adding Classical Negation.- 3.5 Adding Metalevel Priorities.- 3.6 Summary and Further Reading.- 4. Experiments on Theory Refinement.- 4.1 DNA Sequence Analysis.- 4.2 Power Systems Fault Diagnosis.- 4.3.Discussion.- 4.4.Appendix.- II. Knowledge Extraction from Neural Networks.- 5. Knowledge Extraction from Trained Networks.- 5.1 The Extraction Problem.- 5.2 The Case of Regular Networks.- 5.2.1 Positive Networks.- 5.2.2 Regular Networks.- 5.3 The General Case Extraction.- 5.3.1 Regular Subnetworks.- 5.3.2 Knowledge Extraction from Subnetworks.- 5.3.3 Assembling the Final Rule Set.- 5.4 Knowledge Representation Issues.- 5.5 Summary and Further Reading.- 6. Experiments on Knowledge Extraction.- 6.1 Implementation.- 6.2 The Monk's Problems.- 6.3 DNA Sequence Analysis.- 6.4 Power Systems Fault Diagnosis.- 6.5 Discussion.- III. Knowledge Revision in Neural Networks.- 7. Handling Inconsistencies in Neural Networks.- 7.1 Theory Revision in Neural Networks.- 7.1.1The Equivalence with Truth Maintenance Systems.- 7.1.2Minimal Learning.- 7.2 Solving Inconsistencies in Neural Networks.- 7.2.1 Compromise Revision.- 7.2.2 Foundational Revision.- 7.2.3 Nonmonotonic Theory Revision.- 7.3 Summary of the Chapter.- 8. Experiments on Handling Inconsistencies.- 8.1 Requirements Specifications Evolution as Theory Refinement.- 8.1.1Analysing Specifications.- 8.1.2Revising Specifications.- 8.2 The Automobile Cruise Control System.- 8.2.1Knowledge Insertion.- 8.2.2Knowledge Revision: Handling Inconsistencies.- 8.2.3Knowledge Extraction.- 8.3 Discussion.- 8.4 Appendix.- 9. Neural-Symbolic Integration: The Road Ahead.- 9.1 Knowledge Extraction.- 9.2 Adding Disjunctive Information.- 9.3 Extension to the First-Order Case.- 9.4 Adding Modalities.- 9.5 New Preference Relations.- 9.6 A Proof Theoretical Approach.- 9.7 The Forbidden Zone [Amax, Amin].- 9.8 Acceptable Programs and Neural Networks.- 9.9 Epilogue.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List