Nature-Inspired Algorithms for Optimisation

Author:   Raymond Chiong
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Softcover reprint of hardcover 1st ed. 2009
Volume:   193
ISBN:  

9783642101304


Pages:   516
Publication Date:   28 October 2010
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $604.56 Quantity:  
Add to Cart

Share |

Nature-Inspired Algorithms for Optimisation


Add your own review!

Overview

Nature-Inspired Algorithms have been gaining much popularity in recent years due to the fact that many real-world optimisation problems have become increasingly large, complex and dynamic. The size and complexity of the problems nowadays require the development of methods and solutions whose efficiency is measured by their ability to find acceptable results within a reasonable amount of time, rather than an ability to guarantee the optimal solution. This volume 'Nature-Inspired Algorithms for Optimisation' is a collection of the latest state-of-the-art algorithms and important studies for tackling various kinds of optimisation problems. It comprises 18 chapters, including two introductory chapters which address the fundamental issues that have made optimisation problems difficult to solve and explain the rationale for seeking inspiration from nature. The contributions stand out through their novelty and clarity of the algorithmic descriptions and analyses, and lead the way to interesting and varied new applications.

Full Product Details

Author:   Raymond Chiong
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   Softcover reprint of hardcover 1st ed. 2009
Volume:   193
Dimensions:   Width: 15.50cm , Height: 2.70cm , Length: 23.50cm
Weight:   0.825kg
ISBN:  

9783642101304


ISBN 10:   3642101305
Pages:   516
Publication Date:   28 October 2010
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Section I: Introduction.- Why Is Optimization Difficult?.- The Rationale Behind Seeking Inspiration from Nature.- Section II: Evolutionary Intelligence.- The Evolutionary-Gradient-Search Procedure in Theory and Practice.- The Evolutionary Transition Algorithm: Evolving Complex Solutions Out of Simpler Ones.- A Model-Assisted Memetic Algorithm for Expensive Optimization Problems.- A Self-adaptive Mixed Distribution Based Uni-variate Estimation of Distribution Algorithm for Large Scale Global Optimization.- Differential Evolution with Fitness Diversity Self-adaptation.- Central Pattern Generators: Optimisation and Application.- Section III: Collective Intelligence.- Fish School Search.- Magnifier Particle Swarm Optimization.- Improved Particle Swarm Optimization in Constrained Numerical Search Spaces.- Applying River Formation Dynamics to Solve NP-Complete Problems.- Section IV: Social-Natural Intelligence.- Algorithms Inspired in Social Phenomena.- Artificial Immune Systems for Optimization.- Section V: Multi-Objective Optimisation.- Ranking Methods in Many-Objective Evolutionary Algorithms.- On the Effect of Applying a Steady-State Selection Scheme in the Multi-Objective Genetic Algorithm NSGA-II.- Improving the Performance of Multiobjective Evolutionary Optimization Algorithms Using Coevolutionary Learning.- Evolutionary Optimization for Multiobjective Portfolio Selection under Markowitz’s Model with Application to the Caracas Stock Exchange.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List