|
![]() |
|||
|
||||
OverviewThis book provides a step-by-step guide on how to construct a narrowband single photon source for the integration with atom-based memory systems. It combines the necessary theoretical background with crucial experimental methods and characterisations to form a complete handbook for readers at all academic levels. The future implementation of large quantum networks will require the hybridisation of photonic qubits for communication with quantum memories in the context of information storage. Such an interface requires carefully tailored single photons to ensure compatibility with the chosen memory. The source itself is remarkable for a number of reasons, including being the spectrally narrowest and brightest source of its kind; in addition, it offers a novel technique for frequency stabilisation in an optical cavity, together with exceptional portability. Starting with a thorough analysis of the current literature, this book derives the essentialparameters needed to design the source, describes its individual components in detail, and closes with the characterisation of a single photon source. Full Product DetailsAuthor: Markus RambachPublisher: Springer Nature Switzerland AG Imprint: Springer Nature Switzerland AG Edition: Softcover reprint of the original 1st ed. 2018 Dimensions: Width: 15.50cm , Height: 0.90cm , Length: 23.50cm Weight: 0.454kg ISBN: 9783030073114ISBN 10: 3030073114 Pages: 144 Publication Date: 28 December 2018 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsAuthor InformationMarkus Rambach completed his BSc and MSc degree in experimental physics at the University of Innsbruck, Austria, working in the field quantum optics with trapped ions. He was awarded his PhD from the University of Queensland, Australia, in 2017, conducting research on novel single photon sources for quantum communication applications. Dr. Rambach's main research interest is the hybridisation of quantum technologies in quantum networks. He enjoys teaching and science communication, and organised a variety of student events as the treasurer of the UQ chapter of the Optical Society of America. Tab Content 6Author Website:Countries AvailableAll regions |