|
![]() |
|||
|
||||
OverviewThis detailed collection explores techniques involved in the main strategies of nanopore sensing, such as translocation, analyte trapping, and interactions with external binding sites. Opening with a section on nanopore design and nanopore production, the book continues with parts devoted to various biological nanopores, nanopore engineering, and their uses in single molecule sensing, computational methods to study intrinsic nanopore behavior, characterizing the specific translocation activity of a vesicle particle through a nanopore, as well as the use of the technique droplet interface bilayer (DIB) in nanopore and membrane biophysical studies. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Nanopore Technology: Methods and Protocols, with its focus on nanopore technology and biomolecule characterization, will hold the interest of the biophysicists, biochemists, bioengineers, and molecular biologists who are working toward further understanding this key field of research. Full Product DetailsAuthor: Monifa A.V. FahiePublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: 1st ed. 2021 Volume: 2186 Weight: 0.470kg ISBN: 9781071608081ISBN 10: 1071608088 Pages: 231 Publication Date: 14 September 2021 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsPreparation of Fragaceatoxin C (FraC) Nanopores.- Preparation of Cytolysin A (ClyA) Nanopores.- Building Synthetic Transmembrane Peptide Pores.- Design and Assembly of Membrane-Spanning DNA Nanopores.- Determining the Orientation of Porins in Planar Lipid Bilayers.- Revelation of Function and Inhibition of Wza through Single Channel Studies.- Protein Analyte Sensing with an Outer Membrane Protein G (OmpG) Nanopore.- Nanopore Enzymology to Study Protein Kinases and their Inhibition by Small Molecules.- A Selective Activity-Based Approach for Analysis of Enzymes with an OmpG Nanopore.- Oligonucleotide-Directed Protein Threading through a Rigid Nanopore.- Unfolding and Translocation of Proteins through an Alpha-Hemolysin Nanopore by ClpXP.- Simulation of pH-Dependent, Loop-Based Membrane Protein Gating Using Pretzel.- Free Energy Minimization for Vesicle Translocation through a Narrow Pore.- Single Ion-Channel Analysis in Droplet Interface Bilayer.- Continuous and Rapid Solution Exchangein a Lipid Bilayer Perfusion System Based on Droplet-Interface Bilayer.- Protein Transport Studied by a Model Asymmetric Membrane Army Arranged in a Dimple Chip.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |