|
|
|||
|
||||
OverviewNanomaterial Characterization Providing various properties of nanomaterials and the various methods available for their characterization Over the course of the last few decades, research activity on nanomaterials has gained considerable press coverage. The use of nanomaterials has meant that consumer products can be made lighter, stronger, esthetically more pleasing, and less expensive. The significant role of nanomaterials in improving the quality of life is clear, resulting in faster computers, cleaner energy production, target-driven pharmaceuticals, and better construction materials. It is not surprising, therefore, that nanomaterial research has really taken off, spanning across different scientific disciplines from material science to nanotoxicology. A critical part of any nanomaterial research, however, is the need to characterize physicochemical properties of the nanomaterials, which is not a trivial matter. Nanomaterial Characterization: An Introduction is dedicated to understanding the key physicochemical properties and their characterization methods. Each chapter begins by giving an overview of the topic before a case study is presented. The purpose of the case study is to demonstrate how the reader may make use of the background information presented to them and show how this can be translated to solve a nanospecific application scenario. Thus, it will be useful for researchers in helping them design experimental investigations. The book begins with a general overview of the subject, thus giving the reader a solid foundation to nanomaterial characterization. Nanomaterial Characterization: An Introduction features: Nanomaterial synthesis and reference nananomaterials Key physicochemical properties and their measurements including particle size distribution by number, solubility, surface area, surface chemistry, mechanical/tribological properties, and dustiness Scanning tunneling microscopy methods operated under extreme conditions Novel strategy for biological characterization of nanomaterial methods Methods to handle and visualize multidimensional nanomaterial characterization data The book is written in such a way that both students and experts in other fields of science will find the information useful, whether they are in academia, industry, or regulation, or those whose analytical background may be limited.There is also an extensive list of references associated with every chapter to encourage further reading. Full Product DetailsAuthor: Ratna TantraPublisher: John Wiley & Sons Inc Imprint: John Wiley & Sons Inc Dimensions: Width: 6.40cm , Height: 1.50cm , Length: 10.90cm Weight: 0.499kg ISBN: 9781118753590ISBN 10: 1118753593 Pages: 320 Publication Date: 24 May 2016 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Out of stock The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Table of ContentsReviewsFor those actively involved in the nanosafety and other relevant research fields involving nanomaterials, as well as those new to the field, this book represents an excellent reference point and source of knowledge. (Andy Booth 2016) ""For those actively involved in the nanosafety and other relevant research fields involving nanomaterials, as well as those new to the field, this book represents an excellent reference point and source of knowledge."" (Andy Booth 2016) Author InformationRatna Tantra is a Senior Scientist at National Physical Laboratory (NPL), UK. She has been at NPL for 14 years and worked on numerous projects in the field of nanoscience. Her multidisciplinary background was useful, allowing an expansion of her research portfolio in the area of nanomaterial characterization in different scientific disciplines, for example, surface-enhanced Raman spectroscopy and nanotoxicology. Before joining NPL, she was a research associate at Imperial College London, then University of Glasgow. She got her PhD in electrochemistry from University College London. She is a Chartered Scientist, Chartered Chemist, and member of the Royal Society of Chemistry. Tab Content 6Author Website:Countries AvailableAll regions |
||||