|
![]() |
|||
|
||||
OverviewThe central theme of this paper is the variational analysis of homeomorphisms $h: {\mathbb X} \overset{\textnormal{\tiny{onto}}}{\longrightarrow} {\mathbb Y}$ between two given domains ${\mathbb X}, {\mathbb Y} \subset {\mathbb R}^n$. The authors look for the extremal mappings in the Sobolev space ${\mathscr W}^{1,n}({\mathbb X},{\mathbb Y})$ which minimize the energy integral ${\mathscr E}_h=\int_{{\mathbb X}} \,|\!|\, Dh(x) \,|\!|\,^n\, \textrm{d}x$. Because of the natural connections with quasiconformal mappings this $n$-harmonic alternative to the classical Dirichlet integral (for planar domains) has drawn the attention of researchers in Geometric Function Theory. Explicit analysis is made here for a pair of concentric spherical annuli where many unexpected phenomena about minimal $n$-harmonic mappings are observed. The underlying integration of nonlinear differential forms, called free Lagrangians, becomes truly a work of art. Full Product DetailsAuthor: Tadeusz Iwaniec , Jani OnninenPublisher: American Mathematical Society Imprint: American Mathematical Society Volume: 218, 1023 Weight: 0.300kg ISBN: 9780821853573ISBN 10: 0821853570 Pages: 105 Publication Date: 30 June 2012 Audience: General/trade , Professional and scholarly , General , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: To order ![]() Stock availability from the supplier is unknown. We will order it for you and ship this item to you once it is received by us. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |