Multivariate Kernel Smoothing and Its Applications

Author:   José E. Chacón (Universidad de Extremadura, Departamento de Matemáticas, Badajoz, Spain) ,  Tarn Duong (University of Paris-North - Paris 13, Computer Science Laboratory, Villetaneuse, France)
Publisher:   Taylor & Francis Ltd
ISBN:  

9780367571733


Pages:   226
Publication Date:   30 June 2020
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $101.00 Quantity:  
Add to Cart

Share |

Multivariate Kernel Smoothing and Its Applications


Add your own review!

Overview

Full Product Details

Author:   José E. Chacón (Universidad de Extremadura, Departamento de Matemáticas, Badajoz, Spain) ,  Tarn Duong (University of Paris-North - Paris 13, Computer Science Laboratory, Villetaneuse, France)
Publisher:   Taylor & Francis Ltd
Imprint:   Chapman & Hall/CRC
Weight:   0.498kg
ISBN:  

9780367571733


ISBN 10:   0367571730
Pages:   226
Publication Date:   30 June 2020
Audience:   College/higher education ,  General/trade ,  Tertiary & Higher Education ,  General
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Introduction. Density estimation. Density derivative estimation. Statistical topics related to density derivative estimation. Kernel smoothing in other selected settings.

Reviews

"""I am very impressed with this book. It addresses issues that are not discussed in any detail in any other book on density estimation. Furthermore, it is very well-written and contains a wealth of interesting examples. In fact, this is probably one of the best books I have seen on density estimation. Some topics in this book that are not covered in detail in any other book include: multivariate bandwidth matrices, details of the asymptotic MSE for general bandwidth matrices, derivative estimation, level sets, density clustering and significance testing for modal regions. This makes the book unique. The authors have written the book in such a way that it can be used by two different types of readers: data analysts who are not interested in the mathematical details, and students/researchers who do want the details. The `how to read this monograph' is very useful."" ~Larry Wasserman, Carnegie Mellon University ""This book provides a comprehensive overview of the fundamental issues and the numerous extensions of multivariate kernel density estimation. There are three core aspects that are discussed. Firstly, the method of kernel density estimation is thoroughly described in the multivariate setting. Secondly, the problem of selecting a bandwidth matrix is discussed, with a comparison of numerous alternatives. Thirdly, the performance and asymptotic properties of the estimators and bandwidth selections are comprehensively reviewed: there is an abundance of information on the (asymptotic) mean (integrated) squared error of various combinations of estimators and bandwidths. Having examined the above fundamentals, the authors discuss numerous extensions of multivariate kernel density estimation. These include density derivative estimation, level set estimation, density-based clustering, density ridge estimation, feature significance, density di erence estimation, and classification. For all of these methods, there is a strong focus on asy"


""I am very impressed with this book. It addresses issues that are not discussed in any detail in any other book on density estimation. Furthermore, it is very well-written and contains a wealth of interesting examples. In fact, this is probably one of the best books I have seen on density estimation. Some topics in this book that are not covered in detail in any other book include: multivariate bandwidth matrices, details of the asymptotic MSE for general bandwidth matrices, derivative estimation, level sets, density clustering and significance testing for modal regions. This makes the book unique. The authors have written the book in such a way that it can be used by two different types of readers: data analysts who are not interested in the mathematical details, and students/researchers who do want the details. The `how to read this monograph' is very useful."" ~Larry Wasserman, Carnegie Mellon University ""This book provides a comprehensive overview of the fundamental issues and the numerous extensions of multivariate kernel density estimation. There are three core aspects that are discussed. Firstly, the method of kernel density estimation is thoroughly described in the multivariate setting. Secondly, the problem of selecting a bandwidth matrix is discussed, with a comparison of numerous alternatives. Thirdly, the performance and asymptotic properties of the estimators and bandwidth selections are comprehensively reviewed: there is an abundance of information on the (asymptotic) mean (integrated) squared error of various combinations of estimators and bandwidths. Having examined the above fundamentals, the authors discuss numerous extensions of multivariate kernel density estimation. These include density derivative estimation, level set estimation, density-based clustering, density ridge estimation, feature significance, density di erence estimation, and classification. For all of these methods, there is a strong focus on asy


I am very impressed with this book. It addresses issues that are not discussed in any detail in any other book on density estimation. Furthermore, it is very well-written and contains a wealth of interesting examples. In fact, this is probably one of the best books I have seen on density estimation. Some topics in this book that are not covered in detail in any other book include: multivariate bandwidth matrices, details of the asymptotic MSE for general bandwidth matrices, derivative estimation, level sets, density clustering and significance testing for modal regions. This makes the book unique. The authors have written the book in such a way that it can be used by two different types of readers: data analysts who are not interested in the mathematical details, and students/researchers who do want the details. The `how to read this monograph' is very useful. ~Larry Wasserman, Carnegie Mellon University This book provides a comprehensive overview of the fundamental issues and the numerous extensions of multivariate kernel density estimation. There are three core aspects that are discussed. Firstly, the method of kernel density estimation is thoroughly described in the multivariate setting. Secondly, the problem of selecting a bandwidth matrix is discussed, with a comparison of numerous alternatives. Thirdly, the performance and asymptotic properties of the estimators and bandwidth selections are comprehensively reviewed: there is an abundance of information on the (asymptotic) mean (integrated) squared error of various combinations of estimators and bandwidths. Having examined the above fundamentals, the authors discuss numerous extensions of multivariate kernel density estimation. These include density derivative estimation, level set estimation, density-based clustering, density ridge estimation, feature significance, density di erence estimation, and classification. For all of these methods, there is a strong focus on asy


Author Information

José E. Chacón is an associate professor at the Department of Mathematics of the Universidad de Extremadura in Spain. Tarn Duong is a Senior Data Scientist for a start-up which provides short distance carpooling services in France. Both authors have made important contributions to kernel smoothing research over the last couple of decades.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List