|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Kim-Anh Lê Cao , Zoe Marie WelhamPublisher: Taylor & Francis Ltd Imprint: Chapman & Hall/CRC Weight: 0.825kg ISBN: 9780367460945ISBN 10: 0367460947 Pages: 298 Publication Date: 09 November 2021 Audience: College/higher education , General/trade , Tertiary & Higher Education , General Format: Hardback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsI Modern biology and multivariate analysis 1. Multi-omics and biological systems 2. The cycle of analysis 3. Key multivariate concepts and dimension reduction in mixOmics 4. Choose the right method for the right question in mixOmics II mixOmics under the hood 5. Projection to Latent Structures 6. Visualisation for data integration 7. Performance assessment in multivariate analyses III mixOmics in action 8. mixOmics: get started 9. Principal Component Analysis (PCA) 10. 10 Projection to Latent Structure (PLS) 11. Canonical Correlation Analysis (CCA) 12. PLS - Discriminant Analysis (PLS-DA) 13. N − data integration 14. P − data integration 15. Glossary of TermsReviewsThis book was eagerly awaited both to bring together numerous research works published in recent years and to support the use of the Mixomics software which has become an essential tool for data integration and exploration when dealing with multiple types of high-dimensional biological data. It is the result of many years of research on cutting-edge developments in this domain as for sparsity. The book is very pleasant to read and well-structured around the different multivariate approaches. It is well documented with many recent references on the statistical methods and is very didactic through numerous examples accompanied by R codes and illustrations. It can be used by a large audience of statisticians and biologists to process, analyze, visualize, and interpret their multivariate microbiome and multi-omics data, but also as a basis for a course. I highly recommend this book. - Philippe Bastien, Senior Research Associate - L'Oreal R&I This book was eagerly awaited both to bring together numerous research works published in recent years and to support the use of the Mixomics software which has become an essential tool for data integration and exploration when dealing with multiple types of high-dimensional biological data. It is the result of many years of research on cutting-edge developments in this domain as for sparsity. The book is very pleasant to read and well-structured around the different multivariate approaches. It is well documented with many recent references on the statistical methods and is very didactic through numerous examples accompanied by R codes and illustrations. It can be used by a large audience of statisticians and biologists to process, analyze, visualize, and interpret their multivariate microbiome and multi-omics data, but also as a basis for a course. I highly recommend this book. - Philippe Bastien, Senior Research Associate - L'Oreal R&I The book belongs to the Computational Biology Series and presents a wide spectrum of modern methods of multivariate statistical analysis, integration and high-dimension reduction for biological data evaluated via the specialized R package. The neologism Omic is used as a root related to constellations of objects with biological information, for instance, in genomes and proteins-genomics and proteomics (in studying proteins expressed by cells and tissues), metabolic and transcription products-metabolomics and transcriptomics (in studying messenger RNA molecules expressed from the gens of an organism), or also in economics-Reaganomics, etc. [. . . ] Numerous links to the internet websites related to the considered methods of multi-omics data integration are suggested, particularly, the mixOmics project is described at the link http://www.mixOmics.org, and the package is available at Install |mixOmics. The developed methods and software are suitable not only for biologists and bioinformaticians students and researchers, but can be useful for solving computational and content problems in many other fields as well. - Technometrics This is an excellent book for computational biologists, bioinformaticians, statisticians, data scientists, and graduate students who work with high-throughput omics data. The book covers most fundamental concepts of multi-omics data integration, while focusing on their implementations through hands-on examples implemented in the mixOmics R package. - Yuehua Cui, Michigan State University, Biometrics, September 2022 This book was eagerly awaited both to bring together numerous research works published in recent years and to support the use of the Mixomics software which has become an essential tool for data integration and exploration when dealing with multiple types of high-dimensional biological data. It is the result of many years of research on cutting-edge developments in this domain as for sparsity. The book is very pleasant to read and well-structured around the different multivariate approaches. It is well documented with many recent references on the statistical methods and is very didactic through numerous examples accompanied by R codes and illustrations. It can be used by a large audience of statisticians and biologists to process, analyze, visualize, and interpret their multivariate microbiome and multi-omics data, but also as a basis for a course. I highly recommend this book. - Philippe Bastien, Senior Research Associate - L'Oreal R&I The book belongs to the Computational Biology Series and presents a wide spectrum of modern methods of multivariate statistical analysis, integration and high-dimension reduction for biological data evaluated via the specialized R package. The neologism Omic is used as a root related to constellations of objects with biological information, for instance, in genomes and proteins-genomics and proteomics (in studying proteins expressed by cells and tissues), metabolic and transcription products-metabolomics and transcriptomics (in studying messenger RNA molecules expressed from the gens of an organism), or also in economics-Reaganomics, etc. [. . . ] Numerous links to the internet websites related to the considered methods of multi-omics data integration are suggested, particularly, the mixOmics project is described at the link http://www.mixOmics.org, and the package is available at Install |mixOmics. The developed methods and software are suitable not only for biologists and bioinformaticians students and researchers, but can be useful for solving computational and content problems in many other fields as well. - Technometrics Author InformationDr Kim-Anh Lê Cao develops novel methods, software and tools to interpret big biological data and answer research questions efficiently. She is committed to statistical education to instill best analytical practice and has taught numerous statistical workshops for biologists and leads collaborative projects in medicine, fundamental biology or microbiology disciplines. Dr Kim-Anh Lê Cao has a mathematical engineering background and graduated with a PhD in Statistics from the Université de Toulouse, France. She then moved to Australia first as a biostatistician consultant at QFAB Bioinformatics, then as a research group leader at the biomedical University of Queensland Diamantina Institute. She currently is Associate Professor in Statistical Genomics at the University of Melbourne. In 2019, Kim-Anh received the Australian Academy of Science’s Moran Medal for her contributions to Applied Statistics in multidisciplinary collaborations. She has been part of leadership program for women in STEMM, including the international Homeward Bound which culminated in a trip to Antarctica, and Superstars of STEM from Science Technology Australia. Zoe Welham completed a BSc in molecular biology and during this time developed a keen interest in the analysis of big data. She completed a Masters of Bioinformatics with a focus on the statistical integration of different omics data in bowel cancer. She is currently a PhD candidate at the Kolling Institute in Sydney where she is furthering her research into bowel cancer with a focus on integrating microbiome data with other omics to characterise early bowel polyps. Her research interests include bioinformatics and biostatistics for many areas of biology and disseminating that information to the general public through reader-friendly writing. Tab Content 6Author Website:Countries AvailableAll regions |