|
![]() |
|||
|
||||
OverviewThis book reviews the state-of-the-art in multiscale computer modeling, in terms of both accomplishments and challenges. The information in the book is particularly useful for biomedical engineers, medical physicists and researchers in systems biology, mathematical biology, micro-biomechanics and biomaterials who are interested in how to bridge between traditional biomedical engineering work at the organ and tissue scales, and the newer arenas of cellular and molecular bioengineering. Full Product DetailsAuthor: Amit GefenPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 2013 ed. Volume: 14 Dimensions: Width: 15.50cm , Height: 2.70cm , Length: 23.50cm Weight: 7.273kg ISBN: 9783642364815ISBN 10: 3642364810 Pages: 396 Publication Date: 01 May 2013 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsApplication of neural network and finite element method for multiscale prediction of bone fatigue crack growth in cancellous bone.- Multiscale approach to understand the multiphysics phenomena in bone adaptation.- Multiscale elastic models of collagen bio-structures: from cross-linked molecules to soft tissues.- Multiscale modeling of ligaments and tendons.- Multiscale modeling of lymphatic drainage.- A model of electromechanical coupling in the small intestine.- Multi-scale computational modeling in vascular biology: from molecular mechanisms to tissue-level structure and function.- Multiscale modeling in vascular disease and tissue engineering.- Translational research: Multi-scale models of the pulmonary circulation in health and disease.- A multilevel finite element approach to study pressure ulcer aetiology.- Discrete and continuum multiscale behaviour in bacterial communication.- Wound healing: Multi-scale modeling.- Modeling multiscale necrotic and calcified tissue biomechanics in cancer patients: application to ductal carcinoma in situ (DCIS).- Integration of molecular signaling into multiscale modeling of cancer.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |