Multiple Classifier Systems: 9th International Workshop, MCS 2010, Cairo, Egypt, April 7-9, 2010, Proceedings

Author:   Neamat El Gayar ,  Josef Kittler ,  Fabio Roli
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Volume:   5997
ISBN:  

9783642121265


Pages:   328
Publication Date:   25 March 2010
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $219.12 Quantity:  
Add to Cart

Share |

Multiple Classifier Systems: 9th International Workshop, MCS 2010, Cairo, Egypt, April 7-9, 2010, Proceedings


Add your own review!

Overview

Full Product Details

Author:   Neamat El Gayar ,  Josef Kittler ,  Fabio Roli
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Volume:   5997
Dimensions:   Width: 15.50cm , Height: 1.80cm , Length: 23.40cm
Weight:   0.528kg
ISBN:  

9783642121265


ISBN 10:   3642121268
Pages:   328
Publication Date:   25 March 2010
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Classifier Ensembles(I).- Weighted Bagging for Graph Based One-Class Classifiers.- Improving Multilabel Classification Performance by Using Ensemble of Multi-label Classifiers.- New Feature Splitting Criteria for Co-training Using Genetic Algorithm Optimization.- Incremental Learning of New Classes in Unbalanced Datasets: Learn?+?+?.UDNC.- Tomographic Considerations in Ensemble Bias/Variance Decomposition.- Choosing Parameters for Random Subspace Ensembles for fMRI Classification.- Classifier Ensembles(II).- An Experimental Study on Ensembles of Functional Trees.- Multiple Classifier Systems under Attack.- SOCIAL: Self-Organizing ClassIfier ensemble for Adversarial Learning.- Unsupervised Change-Detection in Retinal Images by a Multiple-Classifier Approach.- A Double Pruning Algorithm for Classification Ensembles.- Estimation of the Number of Clusters Using Multiple Clustering Validity Indices.- Classifier Diversity.- “Good” and “Bad” Diversity in Majority Vote Ensembles.- Multi-information Ensemble Diversity.- Classifier Selection.- Dynamic Selection of Ensembles of Classifiers Using Contextual Information.- Selecting Structural Base Classifiers for Graph-Based Multiple Classifier Systems.- Combining Multiple Kernels.- A Support Kernel Machine for Supervised Selective Combining of Diverse Pattern-Recognition Modalities.- Combining Multiple Kernels by Augmenting the Kernel Matrix.- Boosting and Bootstrapping.- Class-Separability Weighting and Bootstrapping in Error Correcting Output Code Ensembles.- Boosted Geometry-Based Ensembles.- Online Non-stationary Boosting.- Handwriting Recognition.- Combining Neural Networks to Improve Performance of Handwritten Keyword Spotting.- Combining Committee-Based Semi-supervised and Active Learning and Its Application toHandwritten Digits Recognition.- Using Diversity in Classifier Set Selection for Arabic Handwritten Recognition.- Applications.- Forecast Combination Strategies for Handling Structural Breaks for Time Series Forecasting.- A Multiple Classifier System for Classification of LIDAR Remote Sensing Data Using Multi-class SVM.- A Multi-Classifier System for Off-Line Signature Verification Based on Dissimilarity Representation.- A Multi-objective Sequential Ensemble for Cluster Structure Analysis and Visualization and Application to Gene Expression.- Combining 2D and 3D Features to Classify Protein Mutants in HeLa Cells.- An Experimental Comparison of Hierarchical Bayes and True Path Rule Ensembles for Protein Function Prediction.- Recognizing Combinations of Facial Action Units with Different Intensity Using a Mixture of Hidden Markov Models and Neural Network.- Invited Papers.- Some Thoughts at the Interface of Ensemble Methods and Feature Selection.- Multiple Classifier Systems for the Recogonition of Human Emotions.- Erratum.- Erratum.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List