|
![]() |
|||
|
||||
OverviewThis book provides a comprehensive study of multi-stage and multi-time scale design of feedback controllers for linear dynamic systems. It examines different types of controllers as can be designed for different parts of the system (subsystems) using corresponding feedback gains obtained by performing calculations (design) only with subsystem (reduced-order) matrices.The advantages of the multi-stage/multi-time scale design are presented and conditions for implementation of these controllers are established. Complete derivations and corresponding design techniques are presented for two-stage/two-time-scale, three-stage/three-time scale, and four-stage/four-time-scale systems. The techniques developed have potential applications to a large number of real physical systems. The design techniques are demonstrated on examples of mathematical models of fuel cells, especially the proton exchange membrane fuel cell. Full Product DetailsAuthor: Verica Radisavljević-Gajić , Miloš Milanović , Patrick RosePublisher: Springer Nature Switzerland AG Imprint: Springer Nature Switzerland AG Edition: 1st ed. 2019 Weight: 0.593kg ISBN: 9783030103880ISBN 10: 3030103889 Pages: 214 Publication Date: 21 February 2019 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsIntroduction.- Continuous-Time Two-Stage Feedback Controller Design.- Discrete-Time Two-Stage Feedback Controller Design.- Three-Stage Continuous-Time Feedback Controller Design.- Three-Stage Discrete-Time Feedback Controller Design.- Four-Stage Continuous-Time Feedback Controller Design.- Modelling and System Analysis of PEM Fuel Cells.- Control of a Hydrogen Gas Processing System.- Extensions to Multi-Stages and Multi-Time Scale.- References.- Index.Reviews“In this book, the authors demonstrate that the use of reduced-order matrices for designing controllers for subsystems in feedback control systems offers a compelling approach to manage complexity, reduce computational demands, enhance accuracy, and ensure robustness, reliability, and security in cyber-physical systems. This methodology empowers engineers and researchers to tackle the challenges of modern, interconnected systems effectively, contributing to safer and more efficient technological advancements.” (Kaïs Ammari, zbMATH 1522.93007, 2023) Author InformationDr. Verica Radisavljevic-Gajic is an Assistant Professor in the Department of Mechanical Engineering at Villanova University. Mr. Milos Milanovic is a graduate student in the Department of Mechanical Engineering at Villanova University. Mr. Patrick Rose is a graduate student in the Department of Mechanical Engineering at Villanova University. Dr. Garrett Clayton is an Associate Professor in the Department of Mechanical Engineering at Villanova University. Tab Content 6Author Website:Countries AvailableAll regions |